scholarly journals Strong FeII emission in NLS1s: An unsolved mystery

2019 ◽  
Vol 15 (S341) ◽  
pp. 297-298
Author(s):  
Swayamtrupta Panda ◽  
Katarzyna Małek ◽  
Marzena Śniegowska ◽  
Bożena Czerny

AbstractIn Panda et al.2018a, we constructed a refined sample from the original Shen et al.(2011) QSO catalog. Based on our hypothesis — the main driver of the Quasar Main Sequence is the maximum of the accretion disk temperature (TBBB) defined by the Big Blue Bump on the Spectral Energy Distribution (Panda et al.2017; Panda et al.2018b). We select the four extreme sources that have RFeII ⩾ 4.0 and use {CIGALE (Boquien et al.2018) to fit their multi—band photometric data. We also perform detailed spectral fitting including the Fe II pseudo—continuum (based on Śniegowska et al.2018)) to estimate and compare the value of RFEII. We show the dependence of FeII strength on changing metallicity.

2020 ◽  
Vol 496 (1) ◽  
pp. 695-707 ◽  
Author(s):  
A C Carnall ◽  
S Walker ◽  
R J McLure ◽  
J S Dunlop ◽  
D J McLeod ◽  
...  

ABSTRACT We present a sample of 151 massive (M* > 1010 M⊙) quiescent galaxies at 2 < z < 5, based on a sophisticated Bayesian spectral energy distribution fitting analysis of the CANDELS UDS and GOODS-South fields. Our sample includes a robust sub-sample of 61 objects for which we confidently exclude low-redshift and star-forming solutions. We identify 10 robust objects at z > 3, of which 2 are at z > 4. We report formation redshifts, demonstrating that the oldest objects formed at z > 6; however, individual ages from our photometric data have significant uncertainties, typically ∼0.5 Gyr. We demonstrate that the UVJ colours of the quiescent population evolve with redshift at z > 3, becoming bluer and more similar to post-starburst galaxies at lower redshift. Based upon this, we construct a model for the time evolution of quiescent galaxy UVJ colours, concluding that the oldest objects are consistent with forming the bulk of their stellar mass at z ∼ 6–7 and quenching at z ∼ 5. We report spectroscopic redshifts for two of our objects at z = 3.440 and 3.396, which exhibit extremely weak Ly α emission in ultra-deep VANDELS spectra. We calculate star formation rates based on these line fluxes, finding that these galaxies are consistent with our quiescent selection criteria, provided their Ly α escape fractions are >3 and >10 per cent, respectively. We finally report that our highest redshift robust object exhibits a continuum break at λ ∼ 7000 Å in a spectrum from VUDS, consistent with our photometric redshift of $z_\mathrm{phot}=4.72^{+0.06}_{-0.04}$. If confirmed as quiescent, this object would be the highest redshift known quiescent galaxy. To obtain stronger constraints on the times of the earliest quenching events, high-SNR spectroscopy must be extended to z ≳ 3 quiescent objects.


2012 ◽  
Vol 8 (S295) ◽  
pp. 319-319
Author(s):  
Xiyan Peng ◽  
Cuihua Du ◽  
Zhenyu Wu

AbstractBased on BATC and SDSS photometric data, we adopt the spectral energy distribution (SED) fitting method to evaluate stellar metallicities in the Galaxy. We find that the mean metallicity shifts from metal-rich to metal-poor with the increase of distance from the Galactic Centre.


2020 ◽  
Vol 495 (1) ◽  
pp. 835-863 ◽  
Author(s):  
Jordan J Thirlwall ◽  
Cristina C Popescu ◽  
Richard J Tuffs ◽  
Giovanni Natale ◽  
Mark Norris ◽  
...  

ABSTRACT We present the first radiative transfer (RT) model of a non-edge-on disc galaxy in which the large-scale geometry of stars and dust is self-consistently derived through the fitting of multiwavelength imaging observations from the ultraviolet to the submm. To this end, we used the axisymmetric RT model of Popescu et al. and a new methodology for deriving geometrical parameters, and applied this to decode the spectral energy distribution (SED) of M33. We successfully account for both the spatial and spectral energy distribution, with residuals typically within $7{{\ \rm per\ cent}}$ in the profiles of surface brightness and within $8{{\ \rm per\ cent}}$ in the spatially integrated SED. We predict well the energy balance between absorption and re-emission by dust, with no need to invoke modified grain properties, and we find no submm emission that is in excess of our model predictions. We calculate that $80\pm 8{{\ \rm per\ cent}}$ of the dust heating is powered by the young stellar populations. We identify several morphological components in M33, a nuclear, an inner, a main and an outer disc, showing a monotonic trend in decreasing star formation surface density (ΣSFR) from the nuclear to the outer disc. In relation to surface density of stellar mass, the ΣSFR of these components defines a steeper relation than the ‘main sequence’ of star-forming galaxies, which we call a ‘structurally resolved main sequence’. Either environmental or stellar feedback mechanisms could explain the slope of the newly defined sequence. We find the star formation rate to be ${\rm SFR}=0.28^{+0.02}_{-0.01}{\rm M}_{\odot }{\rm yr}^{-1}$.


2016 ◽  
Vol 11 (S322) ◽  
pp. 231-232
Author(s):  
M. Zajaček ◽  
M. Valencia-S. ◽  
B. Shahzamanian ◽  
F. Peissker ◽  
A. Eckart ◽  
...  

AbstractNear-infrared observations reveal several infrared-excess sources near the Galactic Centre with emission lines present in their spectra. One of these objects, DSO/G2, which moves around the supermassive black hole (Sgr A*) on a highly eccentric orbit, passed the pericentre at approximately 160 AU in 2014. It remained compact, which implies that at least in this case it is a star embedded in a dusty envelope. The spectral energy distribution and the detection of polarized continuum emission indicate that it is probably a pre-main-sequence star surrounded by a dense envelope with bipolar cavities. In addition, the star associated with DSO/G2 plausibly develops a bow shock due to its supersonic motion. The model of the star surrounded by the non-spherical dusty envelope can reproduce the main characteristics of the DSO/G2 source: 1. spectral energy distribution in near-infrared bands; 2. linear polarization in Ks band; and 3. the overall compact behaviour.


2019 ◽  
Vol 15 (S341) ◽  
pp. 287-288
Author(s):  
Hiroto Mitani ◽  
Naoki Yoshida ◽  
Kazuyuki Omukai ◽  
Takashi Hosokawa

AbstractWe calculate the spectral energy distribution of the first galaxies which contain pre-main-sequence stars by using the stellar evolution code Modules for Experiments in Stellar Astrophysics, the spectra model BT-Settl, and the stellar population synthesis code PEGASE. We calculate the galaxy spectral energy distribution for Salpeter Initial Mass Function. We find that very young first galaxies are bright also in mid-infrared, and the contribution of pre-main-sequence stars can be significant over 0.1 Myr after a star-formation episode.


2019 ◽  
Vol 488 (1) ◽  
pp. L64-L68
Author(s):  
Hiroto Mitani ◽  
Naoki Yoshida ◽  
Kazuyuki Omukai ◽  
Takashi Hosokawa

ABSTRACT One of the major goals of next-generation space-borne and ground-based telescopes is to detect and characterize the first galaxies that were in place in the first few hundred million years after the big bang. We study the spectral energy distribution (SED) of the first galaxies and discuss the prospects for detection and identification. We consider very young star-forming galaxies at z = 15 and incorporate the contribution from pre-main-sequence (PMS) stars. Unlike in the present-day galaxies, primordial protostars are not embedded in dusty gas clouds, and hence the light from them can be visible at a wide range of wavelengths. We use mesa to follow the PMS evolution and use the BT-Settl model to calculate the SED of individual PMS stars. We show that PMS stars contribute to boost the flux in the mid-infrared, and that the galaxy SED at very early evolutionary phases is overall redder than at later phases. The infrared flux contribution is comparable to that caused by emission lines powered by massive stars. We argue that the contribution from PMS stars is important for characterizing young galaxies in the early Universe and also for target selection with future deep galaxy surveys.


2011 ◽  
Vol 7 (S284) ◽  
pp. 237-239
Author(s):  
Areg M. Mickaelian ◽  
Hayk V. Abrahamyan ◽  
Gurgen M. Paronyan ◽  
Gohar S. Harutyunyan

AbstractThe spectral energy distribution (SED) gives a complete picture of the radiation of space objects and may result in correct classifications compared to those based only on optical (or other local) spectra. This is especially crucial for active galaxies, both AGN and Starbursts (SB). For this, multiwavelength (MW) data are needed taken from available surveys and catalogs. We have cross-correlated the Catalogue of quasars and active galaxies with all-sky or large-area MW catalogues, such as X-ray ROSAT (BSC and FSC), UV GALEX (MIS and AIS), optical APM, MAPS, USNO-B1.0, GSC 2.3.2, and SDSS DR8, NIR 2MASS, MIR/FIR WISE, IRAS (PSC and FSC) and AKARI (IRC and FIS), radio GB6, NVSS, FIRST, and WENSS. We have established accurate positions and photometry for a few thousands of objects that appeared in the catalog with poor data, as well as achieved the best astrometric and photometric data for all objects. This allowed correct cross-correlations and establishing correct MW data for these objects. As a result, we obtained 34 photometric points from X-rays to radio and using VO tools built SEDs for some 10,000 bright objects. Some data from other surveys were also used, such as Chandra, XMM, Spitzer, etc. All objects were grouped into several forms of SED and were compared to the known optical classes given in the catalog (QSO, BLL, Sy1, Sy1.2–1.9, Sy2, LINER, SB, and HII). This allowed reveal obscured AGN, as well as find previously misclassified objects. A homogeneous classification for these objects was established. The first part of this project is presented; establishment of accurate positions and photometry and cross-correlations with MW catalogs.


2021 ◽  
Vol 57 (1) ◽  
pp. 167-179
Author(s):  
O. Karakuş ◽  
F. Ekmekçi

Within the scope of extended matter research, we present new spectral analysis results of an active binary system, AR Lac. The low and high resolution spectra of this system, were taken during the period 2013-2016. The evaluation of low dispersion spectra together with the B, V, Rc, Ic and WISE photometric data showed that AR Lac has an excess radiation in the W2 band. In addition, the spectral energy distribution and the minima depth ratios of the light curves of this active binary system were studied to examine the flux contributions of the components of the system depending on wavelengths and on orbital phase. Furthermore, high resolution spectral analysis showed evidence of prominence-like structures and a possible extended matter around the cooler component of AR Lac.


2016 ◽  
Vol 12 (S324) ◽  
pp. 192-195
Author(s):  
J.A. Fernández-Ontiveros ◽  
M.A. Prieto Escudero ◽  
S. Markoff ◽  
L. Reb ◽  
D. Espada ◽  
...  

AbstractLow luminosity AGN (LLAGN) represent the vast majority of the AGN population in the near universe. However, they show intrinsic differences when compared to the Unified Model scenario, i.e. a lack of both the big blue bump and the IR bump in their spectral energy distribution (SED), which are the signatures of an accretion disk and a torus, respectively. In this work we present SED for a sample of six LLAGN in the nearby Universe obtained from subarcsec resolution observations. The nature of the IR continuum emission is discussed in the context of non-thermal radiation powered by compact jets.


Sign in / Sign up

Export Citation Format

Share Document