Modeling galaxy evolution at high-redshift in highly overdense and normal regions

2019 ◽  
Vol 15 (S341) ◽  
pp. 299-301
Author(s):  
Raphael Sadoun ◽  
Emilio Romano-Daz ◽  
Isaac Shlosman ◽  
Zheng Zheng

AbstractWe present results from high-resolution, zoom-in cosmological simulations to study the effect of feedback from galactic outflows on the physical and Lyα properties of high-redshift galaxies in highly overdense and normal environments at z >∼6. The Lyα properties have been obtained by post-processing the simulations with a Monte-Carlo radiative transfer (RT) code. Our results demonstrate that galactic outflows play an important role in regulating the growth of massive galaxies in overdense regions as well as the temperature and metallicity of the intergalactic medium. In particular, we find that galactic outflows are necessary to reproduce the observed Lyα luminosity functions as well as the apparent Lyα luminosity, line width and equivalent width distributions of luminous Lyα emitters at z ∼ 6.

2019 ◽  
Vol 488 (2) ◽  
pp. 1941-1959 ◽  
Author(s):  
Madeline A Marshall ◽  
Simon J Mutch ◽  
Yuxiang Qin ◽  
Gregory B Poole ◽  
J Stuart B Wyithe

Abstract We study the sizes, angular momenta, and morphologies of high-redshift galaxies, using an update of the meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts z = 0–10. We find that the effective radius of a galaxy disc scales with ultraviolet (UV) luminosity as $R_\mathrm{ e}\propto L_{\textrm{UV}}^{0.33}$ at z = 5–10, and with stellar mass as $R_e\propto M_\ast ^{0.24}$ at z = 5 but with a slope that increases at higher redshifts. Our model predicts that the median galaxy size scales with redshift as Re ∝ (1 + z)−m, where m = 1.98 ± 0.07 for galaxies with (0.3–1)$L^\ast _{z=3}$ and m = 2.15 ± 0.05 for galaxies with (0.12–0.3)$L^\ast _{z=3}$. We find that the ratio between stellar and halo specific angular momentum is typically less than 1 and decreases with halo and stellar mass. This relation shows no redshift dependence, while the relation between specific angular momentum and stellar mass decreases by ∼0.5 dex from z = 7 to z = 2. Our model reproduces the distribution of local galaxy morphologies, with bulges formed predominantly through galaxy mergers for low-mass galaxies, disc-instabilities for galaxies with M* ≃ 1010–$10^{11.5}\, \mathrm{M}_\odot$, and major mergers for the most massive galaxies. At high redshifts, we find galaxy morphologies that are predominantly bulge-dominated.


2009 ◽  
Vol 5 (S262) ◽  
pp. 248-256
Author(s):  
J. Devriendt ◽  
A. Slyz ◽  
L. Powell ◽  
C. Pichon ◽  
R. Teyssier

AbstractWe present results from a high resolution cosmological galaxy formation simulation called Mare Nostrum and a ultra-high resimulation of the first 500 million years of a single, Milky Way (MW) sized galaxy. Using the cosmological run, we measure UV luminosity functions and assess their sensitivity to both cosmological parameters and dust extinction. We find remarkably good agreement with the existing data over the redshift range 4 < z < 7 provided we adopt the favoured cosmology (WMAP 5 year parameters) and a self-consistent treatment of the dust. Cranking up the resolution, we then study in detail a z = 9 protogalaxy sitting at the intersection of cold gas filaments. This high-z MW progenitor grows a dense, rapidly spinning, thin disk which undergoes gravitational fragmention. Star formation in the resulting gas clumps rapidly turns them into globular clusters. A far reaching galactic wind develops, co-powered by the protogalaxy and its cohort of smaller companions populating the filaments. Despite such an impressive blow out, the smooth filamentary material is hardly affected at these redshifts.


2016 ◽  
Vol 11 (S321) ◽  
pp. 364-365
Author(s):  
Emmaris Soto ◽  
Duilia F. de Mello ◽  
Marc A. Rafelski ◽  
Jonathan P. Gardner ◽  
Anton M. Koekemoer

AbstractStudies of high redshift galaxies reveal compact sub-galactic regions of star formation, known as ‘clumps’. These ‘clumpy’ galaxies are useful for the study of galactic outskirts by enabling us to examine the radial progression of clumps over large time scales. We use the first deep high resolution NUV image from the Hubble Space Telescope covering intermediate redshifts to explore the implications this radial progression may have on galaxy evolution. From the analysis of 209 clumpy galaxies, we find that higher redshift clumps dominate the outer regions of galactic outskirts. This indicates that clumps may be migrating from the outskirts inward toward their galactic centers.


2021 ◽  
Vol 923 (1) ◽  
pp. 8
Author(s):  
Charles L. Steinhardt ◽  
Christian Kragh Jespersen ◽  
Nora B. Linzer

Abstract One of the primary goals for the upcoming James Webb Space Telescope is to observe the first galaxies. Predictions for planned and proposed surveys have typically focused on average galaxy counts, assuming a random distribution of galaxies across the observed field. The first and most-massive galaxies, however, are expected to be tightly clustered, an effect known as cosmic variance. We show that cosmic variance is likely to be the dominant contribution to uncertainty for high-redshift mass and luminosity functions, and that median high-redshift and high-mass galaxy counts for planned observations lie significantly below average counts. Several different strategies are considered for improving our understanding of the first galaxies, including adding depth, area, and independent pointings. Adding independent pointings is shown to be the most efficient both for discovering the single highest-redshift galaxy and also for constraining mass and luminosity functions.


2020 ◽  
Vol 15 (S359) ◽  
pp. 136-140
Author(s):  
Minju M. Lee ◽  
Ichi Tanaka ◽  
Rohei Kawabe

AbstractWe present studies of a protocluster at z =2.5, an overdense region found close to a radio galaxy, 4C 23.56, using ALMA. We observed 1.1 mm continuum, two CO lines (CO (4–3) and CO (3–2)) and the lower atomic carbon line transition ([CI](3P1-3P0)) at a few kpc (0″.3-0″.9) resolution. The primary targets are 25 star-forming galaxies selected as Hα emitters (HAEs) that are identified with a narrow band filter. These are massive galaxies with stellar masses of > 1010Mʘ that are mostly on the galaxy main sequence at z =2.5. We measure the molecular gas mass from the independent gas tracers of 1.1 mm, CO (3–2) and [CI], and investigate the gas kinematics of galaxies from CO (4–3). Molecular gas masses from the different measurements are consistent with each other for detection, with a gas fraction (fgas = Mgas/(Mgas+ Mstar)) of ≃ 0.5 on average but with a caveat. On the other hand, the CO line widths of the protocluster galaxies are typically broader by ˜50% compared to field galaxies, which can be attributed to more frequent, unresolved gas-rich mergers and/or smaller sizes than field galaxies, supported by our high-resolution images and a kinematic model fit of one of the galaxies. We discuss the expected scenario of galaxy evolution in protoclusters at high redshift but future large surveys are needed to get a more general view.


New Astronomy ◽  
2009 ◽  
Vol 14 (7) ◽  
pp. 591-603 ◽  
Author(s):  
Saumyadip Samui ◽  
Kandaswamy Subramanian ◽  
Raghunathan Srianand

2019 ◽  
Vol 15 (S352) ◽  
pp. 71-72
Author(s):  
Yifei Jin ◽  
Lisa Kewley ◽  
Ralph Sutherland

AbstractAccurate predictions of the physics of interstellar medium (ISM) are vital for understanding galaxy formation and evolution. Modelling photoionized regions with complex geometry produces realistic ionization structures within the nebulae, providing the necessary physical predictions to interpret observational data. 3D photoionization codes built with Monte Carlo techniques provide powerful tools to produce the ionizing radiation field with fractal geometry. We present a high-resolution Monte Carlo modelling of a nebula with fractal geometry, and will further show how nebular geometry influences the emission-line behaviours. Our research has important implications for studies of emission-line ratios in high redshift galaxies.


2019 ◽  
Vol 15 (S352) ◽  
pp. 187-193
Author(s):  
Justin Spilker

AbstractThe completion of the Atacama Large Millimeter/submillimeter Array (ALMA) has led to the ability to make observations with unprecedented resolution at sub-millimeter wavelengths, allowing novel probes of the ISM and kinematics of high-redshift galaxies. Because they are magnified by foreground galaxies or clusters, gravitationally lensed galaxies allow the highest possible spatial resolution to be obtained, and/or a sharp reduction in the observing time required to detect faint objects or spectral lines. These benefits have made lensed galaxies useful benchmark systems for ALMA, enabling a wide variety of science cases. Here I focus in particular on spatially-resolved observations of massive galactic outflows in the very distant z > 4 universe, summarizing plausible tracers of the cold molecular phase of these outflows. The prospects of joint JWST and ALMA observations will be revolutionary, including the chance to take a full census of galactic outflows in multiple gas phases at matched spatial resolution.


2019 ◽  
Vol 625 ◽  
pp. A111 ◽  
Author(s):  
Andrew Butler ◽  
Minh Huynh ◽  
Anna Kapińska ◽  
Ivan Delvecchio ◽  
Vernesa Smolčić ◽  
...  

The evolution of the comoving kinetic luminosity densities (Ωkin) of the radio loud high-excitation radio galaxies (RL HERGs) and the low-excitation radio galaxies (LERGs) in the ultimate XMM extragalactic survey south (XXL-S) field is presented. The wide area and deep radio and optical data of XXL-S have allowed the construction of the radio luminosity functions (RLFs) of the RL HERGs and LERGs across a wide range in radio luminosity out to high redshift (z = 1.3). The LERG RLFs display weak evolution: Φ(z)∝(1 + z)0.67 ± 0.17 in the pure density evolution (PDE) case and Φ(z)∝(1 + z)0.84 ± 0.31 in the pure luminosity evolution (PLE) case. The RL HERG RLFs demonstrate stronger evolution than the LERGs: Φ(z)∝(1 + z)1.81 ± 0.15 for PDE and Φ(z)∝(1 + z)3.19 ± 0.29 for PLE. Using a scaling relation to convert the 1.4 GHz radio luminosities into kinetic luminosities, the evolution of Ωkin was calculated for the RL HERGs and LERGs and compared to the predictions from various simulations. The prediction for the evolution of radio mode feedback in the Semi-Analytic Galaxy Evolution (SAGE) model is consistent with the Ωkin evolution for all XXL-S RL AGN (all RL HERGs and LERGs), indicating that the kinetic luminosities of RL AGN may be able to balance the radiative cooling of the hot phase of the IGM. Simulations that predict the Ωkin evolution of LERG equivalent populations show similar slopes to the XXL-S LERG evolution, suggesting that observations of LERGs are well described by models of SMBHs that slowly accrete hot gas. On the other hand, models of RL HERG equivalent populations differ in their predictions. While LERGs dominate the kinetic luminosity output of RL AGN at all redshifts, the evolution of the RL HERGs in XXL-S is weaker compared to what other studies have found. This implies that radio mode feedback from RL HERGs is more prominent at lower redshifts than was previously thought.


2020 ◽  
Vol 495 (4) ◽  
pp. 4747-4768 ◽  
Author(s):  
Xuejian Shen ◽  
Mark Vogelsberger ◽  
Dylan Nelson ◽  
Annalisa Pillepich ◽  
Sandro Tacchella ◽  
...  

ABSTRACT We present predictions for high redshift (z = 2−10) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the H α and H β + $[\rm O \,{\small III}]$ luminosity functions up to z = 8. The predicted H β + $[\rm O \,{\small III}]$ luminosity functions are consistent with present observations at z ≲ 3 with ${\lesssim} 0.1\, {\rm dex}$ differences in luminosities. However, the predicted H α luminosity function is ${\sim }0.3\, {\rm dex}$ dimmer than the observed one at z ≃ 2. Furthermore, we explore continuum spectral indices, the Balmer break at 4000 Å; (D4000) and the UV continuum slope β. The median D4000 versus specific star formation rate relation predicted at z = 2 is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed AUV versus β relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at z = 2−6 and investigate their dependence on galaxy colours and stellar masses. The attenuation curves are steeper in galaxies at higher redshifts, with bluer colours, or with lower stellar masses. We attribute these predicted trends to dust geometry. Overall, our results are consistent with present observations of high-redshift galaxies. Future James Webb Space Telecope observations will further test these predictions.


Sign in / Sign up

Export Citation Format

Share Document