Helioseismic insights into the generation and evolution of the Sun’s internal magnetic field

2019 ◽  
Vol 15 (S354) ◽  
pp. 94-106
Author(s):  
Anne-Marie Broomhall ◽  
René Kiefer

AbstractProperties of helioseismic acoustic oscillations (p modes) are modified by flows and magnetic fields in the solar interior, with frequencies, amplitudes and damping rates all varying systematically through the solar cycle. Crucially, now, we have a long enough baseline of helioseismic data to compare of the different activity cycles. We review recent efforts along these lines, from the impact of near-surface magnetic fields on p-mode frequencies to the evolution of the torsional oscillation and meridional circulation. We show that each activity cycle for which we have helioseismic data is slightly different in terms of the relationship between p mode frequencies and atmospheric proxies of activity, and in terms of the rotation and meridional circulation flows. However, many challenges remain, crucially including our ability to constrain flows and magnetic fields in the deep solar interior.

2021 ◽  
Vol 44 ◽  
pp. 85-91
Author(s):  
V.N. Obridko ◽  
◽  
D.D. Sokoloff ◽  
V.V. Pipin ◽  
A.S. Shibalova ◽  
...  

In addition to the well-known 11-year cycle, longer and shorter characteristic periods can be isolated in variations of the parameters of helio-geophysical activity. Periods of about 36 and 60 years were revealed in variations of the geomagnetic activity and an approximately 60-year periodicity, in the evolution of correlation between the pressure in the lower atmosphere and the solar activity. Similar periods are observed in the cyclonic activity. Such periods in the parameters of the solar activity are difficult to identify because of a limited database available; however, they are clearly visible in variations of the asymmetry of the sunspot activity in the northern and southern solar hemispheres. In geomagnetic variations, one can also isolate oscillations with the characteristic periods of 5-6 years (QSO) and 2-3 years (QBO). We have considered 5-6-year periodicities (about half the main cycle) observed in variations of the sunspot numbers and the intensity of the dipole component of the solar magnetic field. A comparison with different magnetic dynamo models allowed us to determine the possible origin of these oscillations. A similar result can be reproduced in a dynamo model with nonlinear parameter variations. In this case, the activity cycle turns out to be anharmonic and contains other periodicities in addition to the main one. As a result of the study, we conclude that the 5-6-year activity variations are related to the processes of nonlinear saturation of the dynamo in the solar interior. Quasi-biennial oscillations are actually separate pulses related little to each other. Therefore, the methods of the spectral analysis do not reveal them over large time intervals. They are a direct product of local fields, are generated in the near-surface layers, and are reliably recorded only in the epochs of high solar activity.


2019 ◽  
Vol 489 (1) ◽  
pp. L86-L90 ◽  
Author(s):  
William J Chaplin ◽  
Rachel Howe ◽  
Sarbani Basu ◽  
Yvonne Elsworth ◽  
Timothy W Milbourne ◽  
...  

ABSTRACT We explore the sensitivity of the frequencies of low-degree solar p modes to near-surface magnetic flux on different spatial scales and strengths, specifically to active regions with strong magnetic fields and ephemeral regions with weak magnetic fields. We also use model reconstructions from the literature to calculate average frequency offsets back to the end of the Maunder minimum. We find that the p-mode frequencies are at least 3 times less sensitive (at 95  per cent confidence) to the ephemeral-region field than they are to the active-region field. Frequency shifts between activity cycle minima and maxima are controlled predominantly by the change of active region flux. Frequency shifts at cycle minima (with respect to a magnetically quiet Sun) are determined largely by the ephemeral flux, and are estimated to have been $0.1\, \rm \mu Hz$ or less over the last few minima. We conclude that at epochs of cycle minimum, frequency shifts due to near-surface magnetic activity are negligible compared to the offsets between observed and model frequencies that arise from inaccurate modelling of the near-surface layers (the so-called surface term). The implication is that this will be the case for other Sun-like stars with similar activity, which has implications for asteroseismic modelling of stars.


2010 ◽  
Vol 6 (S272) ◽  
pp. 208-209 ◽  
Author(s):  
Véronique Petit ◽  
Gregg A. Wade ◽  
Evelyne Alecian ◽  
Laurent Drissen ◽  
Thierry Montmerle ◽  
...  

AbstractIn some massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind. Although theoretical models and MHD simulations are able to illustrate the dynamics of such a magnetized wind, the impact of this wind-field interaction on the observable properties of a magnetic star - X-ray emission, photometric and spectral variability - is still unclear. The aim of this study is to examine the relationship between magnetism, stellar winds and X-ray emission of OB stars, by providing empirical observations and confronting theory. In conjunction with the COUP survey of the Orion Nebula Cluster, we carried out spectropolarimatric ESPaDOnS observations to determine the magnetic properties of massive OB stars of this cluster.


2019 ◽  
Vol 15 (S354) ◽  
pp. 147-156
Author(s):  
Irina N. Kitiashvili

AbstractPrediction of solar activity cycles is challenging because physical processes inside the Sun involve a broad range of multiscale dynamics that no model can reproduce and because the available observations are highly limited and cover mostly surface layers. Helioseismology makes it possible to probe solar dynamics in the convective zone, but variations in differential rotation and meridional circulation are currently available for only two solar activity cycles. It has been demonstrated that sunspot observations, which cover over 400 years, can be used to calibrate the Parker-Kleeorin-Ruzmaikin dynamo model, and that the Ensemble Kalman Filter (EnKF) method can be used to link the modeled magnetic fields to sunspot observations and make reliable predictions of a following activity cycle. However, for more accurate predictions, it is necessary to use actual observations of the solar magnetic fields, which are available only for the last four solar cycles. In this paper I briefly discuss the influence of the limited number of available observations on the accuracy of EnKF estimates of solar cycle parameters, the criteria to evaluate the predictions, and application of synoptic magnetograms to the prediction of solar activity.


1994 ◽  
Vol 143 ◽  
pp. 244-251
Author(s):  
Elizabeth Nesme-Ribes ◽  
Dmitry Sokoloff ◽  
Robert Sadourny

Magnetic activity cycles for solar-type stars are believed to originate from non-uniform internal rotation. To determine this depthwise angular velocity distribution, helioseismology is a valuable source of information. Surface rotation, as traced by sunspot motion, is a well-observed parameter with data going back to the beginning of the telescopic era. This long sunspot series can be used in understanding the behaviour of the Sun’s surface rotation, the connection with its internal rotation, and thereby its magnetic activity. Apparent solar diameter is another important parameter. This is related to the structure of the convective envelope and how it reacts to the presence of magnetic fields. Both these parameters are related to the solar output, and can provide a surrogate for total solar irradiance, by way of a theoretical modeling of the response of the convective zone to the emergence of periodic magnetic fields. The impact of solar variability on the terrestrial climate is also addressed.


2009 ◽  
Vol 5 (S264) ◽  
pp. 120-129 ◽  
Author(s):  
A. F. Lanza

AbstractThe solar activity cycle is a manifestation of the hydromagnetic dynamo working inside our star. The detection of activity cycles in solar-like stars and the study of their properties allow us to put the solar dynamo in perspective, investigating how dynamo action depends on stellar parameters and stellar structure. Nevertheless, the lack of spatial resolution and the limited time extension of stellar data pose limitations to our understanding of stellar cycles and the possibility to constrain dynamo models. I briefly review some results obtained from disc-integrated proxies of stellar magnetic fields and discuss the new opportunities opened by space-borne photometry made available by MOST, CoRoT, Kepler, and GAIA, and by new ground-based spectroscopic or spectropolarimetric observations. Stellar cycles have a significant impact on the energetic output and circumstellar magnetic fields of late-type active stars which affects the interaction between stars and their planets. On the other hand, a close-in massive planet could affect the activity of its host star. Recent observations provide circumstantial evidence of such an interaction with possible consequences for stellar activity cycles.


2022 ◽  
Vol 924 (1) ◽  
pp. L20
Author(s):  
Kiran Jain ◽  
Niket Jain ◽  
Sushanta C. Tripathy ◽  
Mausumi Dikpati

Abstract The Sun’s magnetic field varies on multiple timescales. Observations show that the minimum between cycles 24 and 25 was the second consecutive minimum that was deeper and wider than several earlier minima. Since the active regions observed at the Sun’s surface are manifestations of the magnetic field generated in the interior, it is crucial to investigate/understand the dynamics below the surface. In this context, we report by probing the solar interior with helioseismic techniques applied to long-term oscillations data from the Global Oscillation Network Group, that the seismic minima in deeper layers have been occurring about a year earlier than that at the surface for the last two consecutive solar cycles. Our findings also demonstrate a decrease in strong magnetic fields at the base of the convection zone, the primary driver of the surface magnetic activity. We conclude that the magnetic fields located in the core and near-surface shear layers, in addition to the tachocline fields, play an important role in modifying the oscillation frequencies. This further strengthens the existence of a relic magnetic field in the Sun’s core.


Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


Author(s):  
Brynne D. Ovalle ◽  
Rahul Chakraborty

This article has two purposes: (a) to examine the relationship between intercultural power relations and the widespread practice of accent discrimination and (b) to underscore the ramifications of accent discrimination both for the individual and for global society as a whole. First, authors review social theory regarding language and group identity construction, and then go on to integrate more current studies linking accent bias to sociocultural variables. Authors discuss three examples of intercultural accent discrimination in order to illustrate how this link manifests itself in the broader context of international relations (i.e., how accent discrimination is generated in situations of unequal power) and, using a review of current research, assess the consequences of accent discrimination for the individual. Finally, the article highlights the impact that linguistic discrimination is having on linguistic diversity globally, partially using data from the United Nations Educational, Scientific and Cultural Organization (UNESCO) and partially by offering a potential context for interpreting the emergence of practices that seek to reduce or modify speaker accents.


2010 ◽  
Vol 20 (1) ◽  
pp. 3-8
Author(s):  
Dee Adams Nikjeh

Abstract Administrators and supervisors face daily challenges over issues such as program funding, service fees, correct coding procedures, and the ever-changing healthcare regulations. Receiving equitable reimbursement for speech-language pathology and audiology services necessitates an understanding of federal coding and reimbursement systems. This tutorial provides information pertaining to two major healthcare coding systems and explains the relationship of these systems to clinical documentation, the Medicare Physician Fee Schedule and equitable reimbursement. An explanation of coding edits and coding modifiers is provided for use in those occasional atypical situations when the standard use of procedural coding may not be appropriate. Also included in this tutorial is a brief discussion of the impact that the Medicare Improvements for Patients and Providers Act of 2008 (HR 6331 Medicare Improvements for Patients and Providers Act [MIPPA], 2008) has had on the valuation of speech-language pathology procedure codes.


Sign in / Sign up

Export Citation Format

Share Document