Peering into the heart of darkness: Radio VLBI survey of the NEP deep field

2019 ◽  
Vol 15 (S356) ◽  
pp. 366-366
Author(s):  
Joseph Gelfand

AbstractActive Galactic Nuclei (AGN), accreting supermassive black holes at the centers of galaxies, are believed to produce powerful outflows – often observed as radio jets – which significantly influence the evolution of the surrounding galaxy and inter-galactic medium. However, how these jets – which are produced in the central parsecs of the AGN – impact gas on scales thousands to millions times larger is poorly understood. Doing so requires measuring the properties on all the relevant size scales. In this talk I will present initial results from the deepest-ever radio VLBI survey of an extragalactic field, whose milli-arcsecond angular resolution allows us to probe the central parsecs around these AGN. By comparing the radio properties of the detected radio jets with the multi-wavelength properties of their host galaxies, we are better to understand what galaxies generate powerful radio jets, and how do these outflows affect their host galaxies.

2019 ◽  
Vol 630 ◽  
pp. A108 ◽  
Author(s):  
C. Spingola ◽  
J. P. McKean ◽  
D. Massari ◽  
L. V. E. Koopmans

In this paper, we exploit the gravitational lensing effect to detect proper motion in the highly magnified gravitationally lensed source MG B2016+112. We find positional shifts up to 6 mas in the lensed images by comparing two Very Long Baseline Interferometric (VLBI) radio observations at 1.7 GHz that are separated by 14.359 years, and provide an astrometric accuracy of the order of tens of μas. From lens modelling, we exclude a shift in the lensing galaxy as the cause of the positional change of the lensed images, and we assign it to the background source. The source consists of four sub-components separated by ∼175 pc, with proper motion of the order of tens μas yr−1 for the two components at highest magnification (μ ∼ 350) and of the order of a few mas yr−1 for the two components at lower magnification (μ ∼ 2). We propose single active galactic nuclei (AGN) and dual AGN scenarios to explain the source plane. Although, the latter interpretation is supported by the archival multi-wavelength properties of the object. In this case, MG B2016+112 would represent the highest redshift dual radio-loud AGN system discovered thus far, and would support the merger interpretation for such systems. Also, given the low probability (∼10−5) of detecting a dual AGN system that is also gravitationally lensed, if confirmed, this would suggest that such dual AGN systems must be more abundant in the early Universe than currently thought.


2012 ◽  
Vol 8 (S287) ◽  
pp. 323-332 ◽  
Author(s):  
Andrea Tarchi

AbstractLuminous extragalactic masers are traditionally referred to as the ‘megamasers’. Those produced by water molecules are associated with accretion disks, radio jets, or outflows in the nuclear regions of active galactic nuclei (AGN). The majority of OH maser sources are instead driven by intense star formation in ultra-luminous infrared galaxies, although in a few cases the OH maser emission traces rotating (toroidal or disk) structures around the nuclear engines of AGN. Thus, detailed maser studies provide a fundamental contribution to our knowledge of the main nuclear components of AGN, constitute unique tools to measure geometric distances of host galaxies, and have a great impact on probing the, so far, paradigmatic Unified Model of AGN.


2013 ◽  
Vol 9 (S304) ◽  
pp. 323-326
Author(s):  
Marios Karouzos ◽  
Myungshin Im ◽  
Markos Trichas ◽  
Tomo Goto ◽  
Matt Malkan ◽  
...  

AbstractThere exist strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. A rich multi-wavelength dataset is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope. We investigate the star-formation properties of the host galaxies of radio-AGN together with the radio feedback mechanism, potentially responsible for the eventual quenching of star formation. Using broadband SED modelling, the nuclear and host galaxy components of these sources are studied as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this field, while offering evidence supporting a “maintenance” type of feedback from powerful radio-jets.


2019 ◽  
Vol 15 (S356) ◽  
pp. 345-347
Author(s):  
Khatun Rubinur ◽  
Mousumi Das ◽  
Preeti Kharb ◽  
P. T. Rahne

AbstractSimulations expect an enhanced star-formation and active galactic nuclei (AGN) activity during galaxy mergers, which can lead to formation of binary/dual AGN. AGN feedback can enhance or suppress star-formation. We have carried out a pilot study of a sample of ˜10 dual nuclei galaxies with AstroSat’s Ultraviolet Imaging Telescope (UVIT). Here, we present the initial results for two sample galaxies (Mrk 739, ESO 509) and deep multi-wavelength data of another galaxy (Mrk 212). UVIT observations have revealed signatures of positive AGN feedback in Mrk 739 and Mrk 212, and negative feedback in ESO 509. Deeper UVIT observations have recently been approved; these will provide better constraints on star-formation as well as AGN feedback in these systems.


Author(s):  
Tara Murphy ◽  
David L. Kaplan ◽  
Adam J. Stewart ◽  
Andrew O’Brien ◽  
Emil Lenc ◽  
...  

Abstract The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 42
Author(s):  
Claudia M. Raiteri ◽  
Massimo Villata

Active galactic nuclei come in many varieties. A minority of them are radio-loud, and exhibit two opposite prominent plasma jets extending from the proximity of the supermassive black hole up to megaparsec distances. When one of the relativistic jets is oriented closely to the line of sight, its emission is Doppler beamed and these objects show extreme variability properties at all wavelengths. These are called “blazars”. The unpredictable blazar variability, occurring on a continuous range of time-scales, from minutes to years, is most effectively investigated in a multi-wavelength context. Ground-based and space observations together contribute to give us a comprehensive picture of the blazar emission properties from the radio to the γ-ray band. Moreover, in recent years, a lot of effort has been devoted to the observation and analysis of the blazar polarimetric radio and optical behaviour, showing strong variability of both the polarisation degree and angle. The Whole Earth Blazar Telescope (WEBT) Collaboration, involving many tens of astronomers all around the globe, has been monitoring several blazars since 1997. The results of the corresponding data analysis have contributed to the understanding of the blazar phenomenon, particularly stressing the viability of a geometrical interpretation of the blazar variability. We review here the most significant polarimetric results achieved in the WEBT studies.


2019 ◽  
Vol 15 (S356) ◽  
pp. 11-11
Author(s):  
William Nielsen Brandt

AbstractMost of what we know about active galactic nuclei (AGNs) has been driven, or at least strongly shaped, by our methods for finding them, and multiwavelength AGN surveys have achieved remarkable successes in recent decades. I will present a broad, and thus necessarily shallow, review of such multiwavelength AGN surveys. I will first present some brief introductory points on, e.g., general survey approaches, AGN luminosities, host galaxies, and anisotropic emission/obscuration. I will then review many of the key current surveys and their results, separating these into ground-based and space-based surveys. Finally, I will discuss some future prospects including essential remaining questions and “discovery space” considerations.


2012 ◽  
Vol 8 (S292) ◽  
pp. 188-188
Author(s):  
J. R. Allison ◽  
E. M. Sadler ◽  
S. J. Curran ◽  
S. N. Reeves

AbstractRecent targeted studies of associated H i absorption in radio galaxies are starting to map out the location, and potential cosmological evolution, of the cold gas in the host galaxies of Active Galactic Nuclei (AGN). The observed 21 cm absorption profiles often show two distinct spectral-line components: narrow, deep lines arising from cold gas in the extended disc of the galaxy, and broad, shallow lines from cold gas close to the AGN (e.g. Morganti et al. 2011). Here, we present results from a targeted search for associated H i absorption in the youngest and most recently-triggered radio AGN in the local universe (Allison et al. 2012b). So far, by using the recently commissioned Australia Telescope Compact Array Broadband Backend (CABB; Wilson et al. 2011), we have detected two new absorbers and one previously-known system. While two of these show both a broad, shallow component and a narrow, deep component (see Fig. 1), one of the new detections has only a single broad, shallow component. Interestingly, the host galaxies of the first two detections are classified as gas-rich spirals, while the latter is an early-type galaxy. These detections were obtained using a spectral-line finding method, based on Bayesian inference, developed for future large-scale absorption surveys (Allison et al. 2012a).


Author(s):  
B. García-Lorenzo ◽  
A. Monreal-Ibero ◽  
M. Pereira-Santaella ◽  
N. Thatte ◽  
C. Ramos Almeida ◽  
...  

2021 ◽  
Vol 162 (6) ◽  
pp. 276
Author(s):  
Yang-Wei Zhang ◽  
Yang Huang ◽  
Jin-Ming Bai ◽  
Xiao-Wei Liu ◽  
Jian-guo Wang ◽  
...  

Abstract As the third installment in a series systematically searching dual active galactic nuclei (AGN) among merging galaxies, we present the results of 20 dual AGNs found by using the SDSS fiber spectra. To reduce the flux contamination from both the fiber aperture and seeing effects, the angular separation of two cores in our merging galaxy pairs sample is restricted at least larger than 3″. By careful analysis of the emission lines, 20 dual AGNs are identified from 61 merging galaxies with their two cores both observed by the SDSS spectroscopic surveys. 15 of them are identified for the first time. The identification efficiency is about 32.79% (20/61), comparable to our former results (16 dual AGNs identified from 41 merging galaxies) based on the long-slit spectroscopy. Interestingly, two of the 20 dual AGNs show two prominent cores in radio images and their radio powers show they as the radio-excess AGNs. So far, 31 dual AGNs are found by our project and this is the current largest dual AGN sample, ever constructed with a consistent approach. This sample, together with more candidates from ongoing observations, is of vital importance to study the AGN physics and the coevolution between the supermassive black holes and their host galaxies.


Sign in / Sign up

Export Citation Format

Share Document