scholarly journals Proper motion in lensed radio jets at redshift 3: A possible dual super-massive black hole system in the early Universe

2019 ◽  
Vol 630 ◽  
pp. A108 ◽  
Author(s):  
C. Spingola ◽  
J. P. McKean ◽  
D. Massari ◽  
L. V. E. Koopmans

In this paper, we exploit the gravitational lensing effect to detect proper motion in the highly magnified gravitationally lensed source MG B2016+112. We find positional shifts up to 6 mas in the lensed images by comparing two Very Long Baseline Interferometric (VLBI) radio observations at 1.7 GHz that are separated by 14.359 years, and provide an astrometric accuracy of the order of tens of μas. From lens modelling, we exclude a shift in the lensing galaxy as the cause of the positional change of the lensed images, and we assign it to the background source. The source consists of four sub-components separated by ∼175 pc, with proper motion of the order of tens μas yr−1 for the two components at highest magnification (μ ∼ 350) and of the order of a few mas yr−1 for the two components at lower magnification (μ ∼ 2). We propose single active galactic nuclei (AGN) and dual AGN scenarios to explain the source plane. Although, the latter interpretation is supported by the archival multi-wavelength properties of the object. In this case, MG B2016+112 would represent the highest redshift dual radio-loud AGN system discovered thus far, and would support the merger interpretation for such systems. Also, given the low probability (∼10−5) of detecting a dual AGN system that is also gravitationally lensed, if confirmed, this would suggest that such dual AGN systems must be more abundant in the early Universe than currently thought.

2020 ◽  
Vol 635 ◽  
pp. A102 ◽  
Author(s):  
D. Blinov ◽  
C. Casadio ◽  
N. Mandarakas ◽  
E. Angelakis

Context. A number of works have reported that the polarization plane of extragalactic sources as well as the structural axes of radio sources are aligned on the large scale. However, both the claims and their interpretation remain controversial. Aims. For the first time, we explore the alignment of parsec-scale jets. Additionally, we use archival polarimetric data at different wavelengths in order to compare the relative orientations of the jets and the polarization planes of their emission. Methods. Using the flux density distribution in very long baseline interferometry radio maps from the Astrogeo database, we determine the parsec-scale jet orientation for the largest sample of active galactic nuclei to date. Employing the method of parallel transport and a sample statistics characterizing the jet orientation dispersion among neighbors, we test whether the identified jets are significantly aligned. Results. We show that the parsec-scale jets in our sample do not demonstrate any significant global alignments. Moreover, the jet direction is found to be weakly correlated with the direction of the polarization plane at different frequencies.


2018 ◽  
Vol 610 ◽  
pp. L13 ◽  
Author(s):  
M. Dadina ◽  
C. Vignali ◽  
M. Cappi ◽  
G. Lanzuisi ◽  
G. Ponti ◽  
...  

Aim. Ultra-fast outflows (UFO) appear to be common in local active galactic nuclei (AGN) and may be powerful enough (Ėkin ≥ 1% of Lbol) to effectively quench the star formation in their host galaxies. To test feedback models based on AGN outflows, it is mandatory to investigate UFOs near the peak of AGN activity, that is, at high-z where only a few studies are available to date. Methods. UFOs produce Fe resonant absorption lines measured above ≈7 keV. The most critical problem in detecting such features in distant objects is the difficulty in obtaining X-ray data with sufficient signal-to-noise. We therefore selected a distant QSO that gravitational lensing made bright enough for these purposes, the z = 2.64 QSO MG J0414+0534, and observed it with XMM-Newton for ≈78 ks. Results. The X-ray spectrum of MG J0414+0534 is complex and shows signatures of cold absorption (NH ≈ 4 × 1022 cm−2) and of the presence of an iron emission line (E ≈ 6.4 keV, EW = 95 ± 53 eV) consistent with it originating in the cold absorber. Our main result, however, is the robust detection (more than 5σ) of an absorption line at Eint ≈ 9.2 keV (Eobs ≈ 2.5 keV observer frame). If interpreted as due to FeXXVI, it implies gas outflowing at vout ≈ 0.3c. To our knowledge, this is the first detection of an UFO in a radio-loud quasar at z ≥ 1.5. We estimated that the UFO mechanical output is Ėkin ≈ 2.5Lbol with ṗout∕ṗrad ≈ 17 indicating that it is capable of installing significant feedback between the super-massive black hole and the bulge of the host galaxy. We argue that this also suggests a magnetic driving origin of the UFO.


2012 ◽  
Vol 08 ◽  
pp. 184-189 ◽  
Author(s):  
◽  
M. RAUE ◽  
L. STAWARZ ◽  
D. MAZIN ◽  
P. COLIN ◽  
...  

The giant radio galaxy M 87, with its proximity (16 Mpc) and its very massive black hole ((3-6) × 109 M⊙), provides a unique laboratory to investigate very high energy (E>100 GeV; VHE) gamma-ray emission from active galactic nuclei and, thereby, probe particle acceleration to relativistic energies near supermassive black holes (SMBH) and in relativistic jets. M 87 has been established as a VHE γ-ray emitter since 2005. The VHE γ-ray emission displays strong variability on timescales as short as a day. In 2008, a rise in the 43 GHz Very Long Baseline Array (VLBA) radio emission of the innermost region (core; extension of < 100 R s ; Schwarzschild radii) was found to coincide with a flaring activity at VHE. This had been interpreted as a strong indication that the VHE emission is produced in the direct vicinity of the SMBH. In 2010 a flare at VHE was again detected triggering further multi-wavelength (MWL) observations with the VLBA, Chandra, and other instruments. At the same time, M 87 was also observed with the Fermi-LAT telescope at MeV/GeV energies, the European VLBI Network (EVN), and the Liverpool Telescope (LT). Here, preliminary results from the 2010 campaign will be reported.


2019 ◽  
Vol 15 (S356) ◽  
pp. 366-366
Author(s):  
Joseph Gelfand

AbstractActive Galactic Nuclei (AGN), accreting supermassive black holes at the centers of galaxies, are believed to produce powerful outflows – often observed as radio jets – which significantly influence the evolution of the surrounding galaxy and inter-galactic medium. However, how these jets – which are produced in the central parsecs of the AGN – impact gas on scales thousands to millions times larger is poorly understood. Doing so requires measuring the properties on all the relevant size scales. In this talk I will present initial results from the deepest-ever radio VLBI survey of an extragalactic field, whose milli-arcsecond angular resolution allows us to probe the central parsecs around these AGN. By comparing the radio properties of the detected radio jets with the multi-wavelength properties of their host galaxies, we are better to understand what galaxies generate powerful radio jets, and how do these outflows affect their host galaxies.


2019 ◽  
Vol 630 ◽  
pp. L5 ◽  
Author(s):  
K. É. Gabányi ◽  
S. Frey ◽  
S. Satyapal ◽  
A. Constantin ◽  
R. W. Pfeifle

Context. In the hierarchical structure formation model, galaxies grow through various merging events. Numerical simulations indicate that mergers can enhance the activity of central supermassive black holes in galaxies. Aims. A system of three interacting galaxies, called J0849+1114, has recently been identified and multi-wavelength evidence of all three galaxies containing active galactic nuclei has recently been found. The system has substantial radio emission; we aim to investigate the origin of this radio emission with a high-resolution radio interferometric observation and to discover whether it is related to star formation or to one or more of the active galactic nuclei in the system. Methods. We performed high-resolution continuum observation of J0849+1114 with the European Very Long Baseline Interferometry Network at 1.7 GHz. Results. We detected one compact radio emitting source at the position of the easternmost nucleus. Its high brightness temperature and radio power indicate that the radio emission originates from a radio-emitting active galactic nucleus. Additionally, we found that significant amount of flux density is contained in ∼100 milliarcsec-scale feature related to the active nucleus.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 42
Author(s):  
Claudia M. Raiteri ◽  
Massimo Villata

Active galactic nuclei come in many varieties. A minority of them are radio-loud, and exhibit two opposite prominent plasma jets extending from the proximity of the supermassive black hole up to megaparsec distances. When one of the relativistic jets is oriented closely to the line of sight, its emission is Doppler beamed and these objects show extreme variability properties at all wavelengths. These are called “blazars”. The unpredictable blazar variability, occurring on a continuous range of time-scales, from minutes to years, is most effectively investigated in a multi-wavelength context. Ground-based and space observations together contribute to give us a comprehensive picture of the blazar emission properties from the radio to the γ-ray band. Moreover, in recent years, a lot of effort has been devoted to the observation and analysis of the blazar polarimetric radio and optical behaviour, showing strong variability of both the polarisation degree and angle. The Whole Earth Blazar Telescope (WEBT) Collaboration, involving many tens of astronomers all around the globe, has been monitoring several blazars since 1997. The results of the corresponding data analysis have contributed to the understanding of the blazar phenomenon, particularly stressing the viability of a geometrical interpretation of the blazar variability. We review here the most significant polarimetric results achieved in the WEBT studies.


2021 ◽  
Author(s):  
Michael Janssen ◽  
Heino Falcke ◽  
Matthias Kadler ◽  
Eduardo Ros ◽  
Maciek Wielgus ◽  
...  

AbstractVery-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6.


2018 ◽  
Vol 614 ◽  
pp. A74 ◽  
Author(s):  
F. J. Abellán ◽  
I. Martí-Vidal ◽  
J. M. Marcaide ◽  
J. C. Guirado

We have studied a complete radio sample of active galactic nuclei with the very-long-baseline-interferometry (VLBI) technique and for the first time successfully obtained high-precision phase-delay astrometry at Q band (43 GHz) from observations acquired in 2010. We have compared our astrometric results with those obtained with the same technique at U band (15 GHz) from data collected in 2000. The differences in source separations among all the source pairs observed in common at the two epochs are compatible at the 1σ level between U and Q bands. With the benefit of quasi-simultaneous U and Q band observations in 2010, we have studied chromatic effects (core-shift) at the radio source cores with three different methods. The magnitudes of the core-shifts are of the same order (about 0.1 mas) for all methods. However, some discrepancies arise in the orientation of the core-shifts determined through the different methods. In some cases these discrepancies are due to insufficient signal for the method used. In others, the discrepancies reflect assumptions of the methods and could be explained by curvatures in the jets and departures from conical jets.


2019 ◽  
Vol 488 (1) ◽  
pp. 939-953 ◽  
Author(s):  
Ilya N Pashchenko ◽  
Alexander V Plavin

ABSTRACTThe physical parameters of the jets of active galactic nuclei observed with Very Long Baseline Interferometry (VLBI) are usually inferred from core-shift measurements or from the flux and size measured at the peak frequency of the synchrotron spectrum. Both methods are preceded by modelling the observed VLBI jet structure with simple Gaussian templates. Here we infer the jet parameters using an inhomogeneous jet model directly, bypassing the modelling of the source structure with a Gaussian template or image deconvolution. We apply Bayesian analysis to multifrequency VLBA observations of radio galaxy NGC 315 and find that its parsec-scale jet is well described by an inhomogeneous conical model. Our results favour an electron–positron jet. We also detect a component as a part of a counter jet. Its position implies the presence of an external absorber with a steep density gradient close (r = 0.1 pc) to the central engine.


Sign in / Sign up

Export Citation Format

Share Document