An investigation into the genetic relationship of reproduction traits of sows under different mating method (artificial insemination versus natural service)

2005 ◽  
Vol 2005 ◽  
pp. 54-54
Author(s):  
T. W. Lewis ◽  
J. A. Woolliams ◽  
J. Wiseman

Falconer and MacKay (1996) note that the measurement of a trait in two different environments may be considered as two traits rather than one. In this way it is possible, through the calculation of genetic correlations, to estimate to what extent the two measurements under different conditions are in fact the same characteristic and are determined by the same genes. The widespread use of AI in pig production has faltered due to problems with dilution and cryopreservation of semen and yet an industry split, where breeders and nucleus herds use AI extensively but multipliers and commercial producers do not, is becoming apparent. Reproductive traits are increasingly seen as an important component of overall pig production and while the genetic correlation between reproductive and production traits has been explored, little work has focused on the genotype by environment interaction of such fertility traits. The present study reports the genetic relationship of number born alive (NBA) in litters conceived naturally and by AI, and in rate of weaning to first service (WTFS-1).

2000 ◽  
Vol 43 (3) ◽  
pp. 287-298
Author(s):  
J. Bizelis ◽  
A. Kominakis ◽  
E. Rogdakis ◽  
F. Georgadopoulou

Abstract. Production and reproduetive traits in Danish Landrace (LD) and Large White (LW) swine were analysed by restricted maximum likelihood methods to obtain heritabilities as well as genetic and phenotypic correlations. Production traits were: age, backfat thickness (BT), muscle depth (MD) and the ratio BT/MD, adjusted to Standard bodyweight of 85 kg. Reproduction traits were: number of pigs born (NB) and number of pigs weaned (NW) per sow and parity. Heritabilities for age, BT, MD and BT/MD were 0.60, 0.44, 0.51 and 0.42 for LD and 0.36, 0.44, 0.37 and 0.45 for LW, respectively. Genetic correlations between age and BT were −0.22 in LD and – 0.44 in LW. The genetic correlation between age and MD was close to zero in both breeds. Genetic correlation between BT and MD were −0.36 and −0.25 in LD and LW, respectively. Heritabilities for NB were 0.25 in LD and 0.13 in LW while heritabilities for NW were close to zero in both breeds. Genetic correlation between NB and NW was 0.46 and 0.70 in LD and LW, respectively.


Author(s):  
Xuemin Wang ◽  
Colleen Hunt ◽  
Alan Cruickshank ◽  
Emma Mace ◽  
Graeme Hammer ◽  
...  

Sorghum in Australia is grown in water-limited environments of varying extent, generating substantial genotype × environment interaction (GEI). Much of the yield variation and GEI results from variations in flowering time and tillering through their effects on canopy development. The confounding effects of flowering and tillering complicate the interpretation of breeding trials. In this study, we evaluated the impacts of both flowering time (DTF) and tillering capacity (FTN) on yield of 1741 unique test hybrids derived from three common female testers in 21 yield testing trials (48 tester/trial combinations) across the major sorghum production regions in Australia in three seasons. Contributions of DTF and FTN to genetic variation in grain yield were significant in 14 and 12 tester/trial combinations, respectively. The proportion of genetic variance in grain yield explained by DTF and FTN ranged from 0.2% to 61.0% and from 1.4% to 56.9%, respectively, depending on trials and genetic background of female testers. The relationship of DTF or FTN with grain yield of hybrids was frequently positive, but varied across the genetic background of testers. Accounting for the effects of DTF and FTN using linear models did not substantially increase the between trial genetic correlations for grain yield. The results suggested that other factors affecting canopy development dynamics and grain yield might contribute GEI and/or the linear approach to account for DTF and FTN on grain yield did not capture the complex non-linear interactions.


2019 ◽  
Vol 97 (9) ◽  
pp. 3699-3713 ◽  
Author(s):  
Jean-Luc Gourdine ◽  
Juliette Riquet ◽  
Roseline Rosé ◽  
Nausicaa Poullet ◽  
Mario Giorgi ◽  
...  

Abstract Heat stress affects pig health, welfare, and production, and thus the economic viability of the pig sector in many countries. Breeding for heat tolerance is a complex issue, increasingly important due to climate change and the development of pig production in tropical areas. Characterizing genetic determinism of heat tolerance would help building selection schemes dedicated to high performance in tropical areas. The main objective of our study was to estimate the genetic parameters for production and thermoregulation traits in two highly related growing pig populations reared in temperate (TEMP) or tropical humid (TROP) environment. Pigs came from a backcross population between Large White (LW, heat sensitive) and Creole (CR, heat tolerant) pigs. Phenotypic data were obtained on a total of 1,297 pigs using the same procedures in both environments, for body weight (BW, at weeks 11 and 23), daily feed intake (ADFI), backfat thickness (BFT, at weeks 19 and 23), cutaneous temperature (CT, at weeks 19 and 23), and rectal temperature (RT, at weeks 19, 21, and 23). Feed conversion ratio (FCR) and residual feed intake (RFI) were computed for the whole test period (11 to 23 wk). Criteria comparing the fits to the data revealed genotype × environment (G × E) interactions for most traits but not for FCR. The variance components were obtained using two different methods, a restricted maximum likelihood method and a Bayesian Markov chain Monte Carlo method, considering that traits are either similar or different in each environment. Regardless of the method, heritability estimates for production traits were moderate to high, except for FCR (lower than 0.18). Heritability estimates for RT were low to moderate, ranging from 0.04 to 0.34. The genetic correlations of each trait between environments generally differed from 1, except for FCR and ADG. For most thermoregulation traits, they also did not differ significantly from zero, suggesting that the main genetic bases of heat tolerance may vary in different environment. Within environments, the unfavorable genetic correlations between production traits and RT suggest an antagonism between the ability to maintain inner temperature and the ability to increase ADFI and ADG. However, greater RT were also associated to leaner pigs and better feed efficiency. Nevertheless, due to large inaccuracies of these estimations, larger cohorts would be needed to decide about the best breeding schemes to choose for tropical pig production.


2011 ◽  
Vol 59 (2) ◽  
pp. 170 ◽  
Author(s):  
M. G. Hamilton ◽  
P. A. Tilyard ◽  
D. R. Williams ◽  
R. E. Vaillancourt ◽  
T. J. Wardlaw ◽  
...  

Eucalyptus globulus is one of the best known examples of a heteroblastic plant. It exhibits a dramatic phase change from distinctive juvenile to adult leaves, but the timing of this transition varies markedly. We examined the genetic variation in the timing of heteroblastic transition using five large open-pollinated progeny trials established in north-western Tasmania. We used univariate and multi-variate mixed models to analyse data on the presence/absence of adult or intermediate foliage at age 2 years from a total of 14 860 trees across five trials, as well as height to heteroblastic phase change from one trial. Up to 566 families and 15 geographic subraces of E. globulus were represented in the trials. The timing of the heteroblastic transition was genetically variable and under strong genetic control at the subrace and within-subrace level, with single-trial narrow-sense heritability estimates for the binary trait averaging 0.50 (range 0.44–0.65). The degree of quantitative trait differentiation in the timing of heteroblastic transition among subraces, as measured by QST, exceeded the published level of neutral molecular marker (FST) differentiation in all cases, arguing that diversifying selection has contributed to shaping broad-scale patterns of genetic differentiation. Most inter-trial genetic correlations were close to one at the subrace and additive genetic levels, indicating that the genetic variation in this important developmental change is expressed in a stable manner and that genotype-by-environment interaction is minimal across the environments studied.


2004 ◽  
Vol 44 (8) ◽  
pp. 745 ◽  
Author(s):  
S. W. P. Cloete ◽  
A. R. Gilmour ◽  
J. J. Olivier ◽  
J. B. van Wyk

Genetic and phenotypic trends and parameters were estimated for reproduction, fleece weight and liveweight in a South African Merino population, divergently selected from 1986, either for (H line) or against (L line) maternal multiple rearing ability. Annual reproduction, ewe greasy fleece weight and pre-joining liveweight data were recorded on 809 Merino ewes, from 1986 to 2002. Phenotypic trends indicated divergence in reproduction traits between the H and L lines. The direct additive variance ratio (h2 ± s.e.) for day of lambing was 0.08 ± 0.02. Estimates of h2 for reproduction traits were: 0.10 ± 0.02 for number of lambs born per ewe; 0.04 ± 0.02 for number of lambs weaned per ewe; and 0.04 ± 0.02 for weight of lamb weaned per ewe, corrected for the gender of the lamb. Corresponding h2 estimates for annual production were 0.57 ± 0.06 for greasy fleece weight and 0.48 ± 0.06 for ewe liveweight at joining. Service sire only exerted a significant (P<0.05) effect on day of lambing, but it accounted for merely 2% of the overall phenotypic variation. Ewe permanent environment variance ratios (c2ewe) for the reproduction traits were: 0.07 ± 0.03 for number of lambs born per ewe; 0.11 ± 0.03 for number of lambs weaned per ewe; and 0.11 ± 0.03 for total weight of lamb weaned per ewe. Corresponding c2ewe estimates for annual production traits were 0.14 ± 0.05 for greasy fleece weight and 0.27 ± 0.06 for ewe joining weight. Genetic and ewe permanent environmental correlations between measures of reproduction exceeded 0.7. Genetic correlations of reproduction traits with greasy fleece weight were low and variable in sign. Genetic correlations of reproduction traits with ewe joining weight were positive and particularly high for weight of lamb weaned. Permanent environmental correlations of reproduction traits with greasy fleece weight and joining weight were generally low to moderate. Genetic trends for the H and L lines (derived from averaged direct breeding values within birth years) were divergent (P<0.01) for all reproduction traits. Expressed as percentage of the overall least squares means of the respective traits, breeding values in the H line increased annually, with 1.3% for lambs born per ewe, 1.5% for lambs weaned per ewe and by 1.8% for weight of lamb weaned per ewe. Corresponding trends in the L line were, respectively, –0.6%, –1.0% and –1.2% per year. Substantial genetic progress in annual lamb output was attainable, despite relatively small h2 estimates. This response was achieved without unfavourable genetic changes in wool and liveweight.


2018 ◽  
Vol 58 (2) ◽  
pp. 207 ◽  
Author(s):  
S. Dominik ◽  
A. A. Swan

The present study estimated phenotypic and genetic relationships between wool production, reproduction and bodyweight traits in Australian fine-wool Merino sheep. The data for the study originated from the CSIRO Fine Wool Project, Armidale, Australia. Data on wool characteristics, measured at ~10 and 22 months of age, bodyweight and several reproduction traits across consecutive lambing opportunities were analysed. The genetic correlations were moderately negative between fibre diameter measured as yearling and adult, and lamb survival (rg = –0.34 ± 0.15 and rg = –0.28 ± 0.14 respectively) and total number of lambs weaned (rg = –0.32 ± 0.21 and rg = –0.40 ± 0.21 respectively). The genetic correlations of yearling and adult greasy and clean fleece weights with number of lambs weaned and fecundity showed moderately to highly negative relationships and a moderately negative correlation with the number of fetuses at pregnancy scanning. Phenotypic correlations between reproduction and wool production traits were estimated to be zero, with the exception of bodyweight showing low to moderate positive phenotypic correlations with total number of lambs born and weaned. Genetic variances were generally low for the reproduction traits and resulted in low heritability estimates (from h2 = 0.03 ± 0.01 to h2 = 0.12 ± 0.13), with the exception of total number of lambs born (h2 = 0.25 ± 0.03). The study indicated that parameter estimation and trait definition of lifetime reproduction records require careful consideration and more work in this area is required.


1993 ◽  
Vol 56 (1) ◽  
pp. 69-83 ◽  
Author(s):  
C. A. Morris ◽  
R. L. Baker ◽  
S. M. Hickey ◽  
D. L. Johnson ◽  
N. G. Cullen ◽  
...  

AbstractA total of 161 bulls from 11 breeds were used to generate crossbred calves from Angus cows in 1973 to 1977 at each of three diverse New Zealand locations, and from Hereford cows at one of the locations in the same years. The bulls comprised four local breeds, Angus, Friesian, Hereford, and Jersey, and seven recently imported breeds, Blonde d'Aquitaine, Charolais, Chianina, Limousin, Maine Anjou, Simmental and South Devon. This paper reports the reproductive and maternal performance of the straightbred and first-cross cows over the first four calvings, with first mating as yearlings at 14 to 16 months of age. A total of 7575 mating records from 2109 cows were analysed. Location differences were greater for reproduction than for growth traits and resulted in genotype × environment interactions for some components of cow performance and particularly the composite traits, weight of calf weaned per cow joined (productivity) and cow ‘efficiency’ (the ratio of productivity to cow weight). At all locations the Friesian-cross cows weaned the greatest weight of calf per head but were matched or surpassed by the lighter Jersey crosses in terms of efficiency of calf production. Most of the European crosses performed relatively much better in the most favourable environment than in the harsh environment and this was particularly marked for the productivity of Simmental crosses. Heterosis as a proportion of the purebred mean was important for cow performance and particularly pregnancy rate (0·12), productivity (0·21) and the efficiency ratio (0·16). Heritabilities for weight and age at puberty were both 0·34 (s.e. 0·08). Repeatabilities and heritabilities for cow reproductive traits were low (0·0 to 0·10) but higher for calf weights up to weaning as a trait of the cow (0·09 to 0·38). In general, the large European breeds which excelled in growth and carcass production produced female progeny which reached puberty at greater ages, had lower reproductive performance (especially in less favourable environments) and larger mature size. Some breed utilization strategies to achieve trade-offs between these genetic antagonisms are discussed.


2014 ◽  
Vol 54 (1) ◽  
pp. 1 ◽  
Author(s):  
D. J. Johnston ◽  
S. A. Barwick ◽  
G. Fordyce ◽  
R. G. Holroyd ◽  
P. J. Williams ◽  
...  

Reproduction records from 2137 cows first mated at 2 years of age and recorded through to 8.5 years of age were used to study the genetics of early and lifetime reproductive performance from two genotypes (1020 Brahman and 1117 Tropical Composite) in tropical Australian production systems. Regular ultrasound scanning of the reproductive tract, coupled with full recording of mating, calving and weaning histories, allowed a comprehensive evaluation of a range of reproductive traits. Results showed components traits of early reproductive performance had moderate to high heritabilities, especially in Brahmans. The heritability of lactation anoestrous interval in 3-year-old cows was 0.51 ± 0.18 and 0.26 ± 0.11 for Brahman and Tropical Composite, respectively. Heritabilities of binary reproductive output traits (conception rate, pregnancy rate, calving rate and weaning rate) from first and second matings were generally moderate to high on the underlying scale. Estimates ranged from 0.15 to 0.69 in Brahman and 0.15 to 0.34 in Tropical Composite, but were considerably lower when expressed on the observed scale, particularly for those traits with high mean levels. Heritabilities of lifetime reproduction traits were low, with estimates of 0.11 ± 0.06 and 0.07 ± 0.06 for lifetime annual weaning rate in Brahman and Tropical Composite, respectively. Significant differences in mean reproductive performance were observed between the two genotypes, especially for traits associated with anoestrus in first-lactation cows. Genetic correlations between early-in-life reproductive measures and lifetime reproduction traits were moderate to high. Genetic correlations between lactation anoestrous interval and lifetime annual weaning rate were –0.62 ± 0.24 in Brahman and –0.87 ± 0.32 in Tropical Composite. The results emphasise the substantial opportunity that exists to genetically improve weaning rates in tropical beef cattle breeds by focusing recording and selection on early-in-life female reproduction traits, particularly in Brahman for traits associated with lactation anoestrus.


1996 ◽  
Vol 47 (8) ◽  
pp. 1275 ◽  
Author(s):  
E Tholen ◽  
KL Bunter ◽  
S Hermesch ◽  
HU Graser

Data sets from 2 large Australian piggeries were used to estimate genetic parameters for the traits weaning to conception interval (WCIi-l,i) and farrowing interval (FIi-l,i), number born alive (NBAI), average piglet birthweight (BWi), 21-day litter weight (W21i), and sow stayability (STAYli) recorded for each ith parity, as well as sow average daily gain (ADG) and backfat (BF) recorded at the end of performance test. Over parities and herds, heritabilities for each trait were in the ranges: WCI/FI, 0.0-0.10; NBA, 0.09-0.16; BW, 0.11-0.35; W21, 0.12-0.23; STAYli, 0.02-0.09; ADG, 0.35-0.37; BF, 0.36-0.45. Genetic correlations between NBAl and NBA from later parities were significantly different from 1. In addition, in 1 herd negative genetic correlations (rg = -0.04 to -0.25) were found between sow stayability traits and NBA1, but not NBA recorded in later parities. Stayability was Unfavourably correlated with ADG and BF, and favourably correlated with WCI12. However, WCI12 was unfavourably correlated genetically with BF (rg = -0.24) but uncorrelated with ADG. Antagonistic relationships also existed between NBA and BW, NBA and W21, and BW and STAY. In addition to the traditional traits currently included in pig-breeding programs (e.g. ADG, BF, and NBA), traits such as WCI, BW, and STAY should also be considered as selection criteria to minimise the detrimental effects of antagonistic genetic relationships between traits.


2021 ◽  
Author(s):  
Asher I Hudson ◽  
Sarah G Odell ◽  
Pierre Dubreuil ◽  
Marie-Helene Tixier ◽  
Sebastien Praud ◽  
...  

Genotype by environment interactions are a significant challenge for crop breeding as well as being important for understanding the genetic basis of environmental adaptation. In this study, we analyzed genotype by environment interaction in a maize multi-parent advanced generation intercross population grown across five environments. We found that genotype by environment interactions contributed as much as genotypic effects to the variation in some agronomically important traits. In order to understand how genetic correlations between traits change across environments, we estimated the genetic variance-covariance matrix in each environment. Changes in genetic covariances between traits across environments were common, even among traits that show low genotype by environment variance. We also performed a genome-wide association study to identify markers associated with genotype by environment interactions but found only a small number of significantly associated markers, possibly due to the highly polygenic nature of genotype by environment interactions in this population.


Sign in / Sign up

Export Citation Format

Share Document