Novel wideband slot antenna having notch-band function for 2.4 GHz WLAN and UWB applications

2011 ◽  
Vol 3 (4) ◽  
pp. 451-458 ◽  
Author(s):  
Arumugam Chellamuthu Shagar ◽  
Shaik Davood Wahidabanu

In this paper, the design, simulation, and fabrication of a novel printed rectangular slot antenna with a band-notched function suitable for 2.4 GHz wireless local area network (WLAN) and ultra-wideband (UWB) applications is presented and investigated. Two pairs of slits are introduced into the ground plane to realize band-notched function, by tuning the position, length, and width of which a suitable rejected frequency band can be obtained. To improve the impedance matching, a rectangular cut is also made in the ground plane so that the antenna can cover 2–12 GHz frequency range. According to the measured results, the proposed antenna has a large bandwidth totally satisfying the requirement of 2.4 GHz WLAN and UWB systems, while providing the required band-notch function from 5.1 to 5.9 GHz. The study of transfer function and time-domain characteristics also indicates the band-notched function of the antenna. The radiation patterns display nearly omni-directional performance and the antenna gain is stable except in the rejected frequency band (5.1–5.9 GHz). Moreover, group delays are within 1.5 ns except for the notch band. These features make it a promising candidate for UWB wireless applications. Details of this antenna are described, and the experimental results of the constructed prototype are given.

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 158 ◽  
Author(s):  
MuhibUr Rahman ◽  
Mahdi NagshvarianJahromi ◽  
Seyed Mirjavadi ◽  
Abdel Hamouda

A compact band-notched UWB (Ultra-Wide Band) antenna with integrated Bluetooth is developed for personal wireless communication and UWB applications. The antenna operates at the UWB frequency band (3.1–10.6 GHz) as well as Bluetooth (2.4–2.484 GHz), with band-notch characteristics at the Wireless Local Area Network (WLAN) frequency band (5–6 GHz). A new technique of integrating Bluetooth within a UWB band-notched antenna is developed and analyzed. The UWB frequency band is realized by utilizing a conventional cylindrical radiating patch and a modified partial ground plane. The Bluetooth band is integrated using a miniaturized resonator with the addition of capacitors. Further, to mitigate the interference of the WLAN frequency band within the UWB spectrum, a conventional slot resonator is integrated within the radiator to achieve the task. The antenna is designed and fabricated, and its response in each case is provided. Moreover, the antenna exhibits a good radiation pattern with a stable gain in the passband. The present antenna is also compared to state-of-the-art structures proposed in the literature. The miniaturized dimensions (30 × 31 mm2) of the antenna make it an excellent candidate for UWB and personal wireless communication applications.


2015 ◽  
Vol 8 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Majid Shokri ◽  
Vahid Rafii ◽  
Saeid Karamzadeh ◽  
Zhaleh Amiri ◽  
Bal Virdee

A compact CPW-fed printed monopole slot antenna is presented for ultra-wideband (UWB) applications. The antenna comprises of a dome-shaped radiating element in which embedded is an open-loop inverted triangular-shaped slot (TSS). The antenna is fed through a coplanar waveguide to provide an ultra-wide impedance bandwidth of 8.95 GHz (2.58–11.53 GHz) which corresponds to a bandwidth ratio of 1:4.46 for VSWR <2. The antenna possesses a notch band functionality to filter out interfering C-band signals like wireless local-area network (WLAN). The notch band frequency is determined by physical parameters defining the TSS that allows fine control of the notch's location. The proposed antenna also possesses a flat gain response expect at the notched band and occupies a relatively small volume of 25 × 25 × 0.8 mm3 for ease of system integration.


2015 ◽  
Vol 9 (2) ◽  
pp. 395-402 ◽  
Author(s):  
Swati Yadav ◽  
Anil Kumar Gautam ◽  
Binod Kumar Kanaujia

To restrict electromagnetic interference at WiMAX (3.3–3.7 GHz) and wireless local area network (WLAN) (5.15–5.825 GHz) bands operating within ultra wide bandwidth (UWB) band, a novel design of lamp-shaped UWB microstrip antenna with dual band-notched characteristics is presented. The proposed antenna is composed of a lamp-shaped radiating patch with two rectangular ground planes on both the sides of the radiator with the gap of 0.57 mm. To improve impedance mismatch at middle frequencies, two triangular strips one at each of the ground plane are added; whereas a rectangular slot is etched in the radiating patch to remove impedance mismatch at higher frequencies of the UWB band. Furthermore, an L-shaped slot in the radiator and two L-shaped slots in the ground plane are used to restrict electromagnetic interference (EMI) at WiMAX and WLAN bands, respectively, without affecting the electrical performance of the UWB antenna. Effects of the key parameters on the frequency range of the notched bands are also investigated. The proposed design shows a measured impedance bandwidth of 12.5 GHz (2.7–14.4 GHz), with the two band-notched bands of 3.0–3.9 and 4.9–5.8 GHz. The antenna is suitable to be integrated within the portable UWB devices without EMI interference at WiMAX and WLAN bands.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2015 ◽  
Vol 8 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Raghupatruni Venkatsiva Ram Krishna ◽  
Raj Kumar ◽  
Nagendra Kushwaha

In this paper, a microstrip fed, L-shape slot antenna for dual polarization is proposed. The two arms of the slot generate electric fields of orthogonal polarizations. By properly sectioning the slot and the feed line, ultra wideband (UWB) behavior is obtained. The measured impedance bandwidth (S11< −10 dB) is more than 8.6 GHz (112%) and 8.2 GHz (104%) for Port 1 and Port 2, respectively. The measured isolation is better than 25 dB over most of the band. The aperture field distribution justifies the dual polarized nature. A modified version which implements a band-notch over 5.1–5.85 GHz wireless local area network (WLAN) band is also presented. With a compact, single substrate design, the antenna can be useful in MIMO transmission systems, polarimetric UWB radar, high performance microwave imaging, and other future wireless communications devices.


2013 ◽  
Vol 5 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Lalithendra Kurra ◽  
Mahesh P Abegaonkar ◽  
Ananjan Basu ◽  
Shiban K Koul

In this paper, a new way of obtaining a band rejection in a ultra wideband (UWB) filter using a uniplanar Electromagnetic bandgap (EBG) structure is reported. The EBG structure has a bandgap centered at 6.69 GHz which is almost 38% lower compared with the conventional uniplanar EBG of same dimensions. A one-dimensional EBG structure coupled with a microstrip line provides a narrow bandgap, which is used in obtaining a notch in the UWB filter. Single notch UWB filters with variations in the placement of EBG are fabricated producing a notch centered at 5.19 GHz (wireless local area network (WLAN)). A dual notch (5.16 and 8.24 GHz (satellite communication)) UWB filter is also fabricated with two different unit cell EBGs'. Switchable and tunable notch band UWB filters are proposed.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Jianxing Li ◽  
Jianying Guo ◽  
Bin He ◽  
Anxue Zhang ◽  
Qing Huo Liu

AbstractA novel uniplanar CPW-fed tri-band stub-loaded slot antenna is proposed for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. Dual resonant modes were effectively excited in the upper band by using two identical pairs of slot stubs and parasitic slots symmetrically along the arms of a traditional CPW-fed slot dipole, achieving a much wider bandwidth. The middle band was realized by the fundamental mode of the slot dipole. To obtain the lower band, two identical inverted-L-shaped open-ended slots were symmetrically etched in the ground plane. A prototype was fabricated and measured, showing that tri-band operation with 10-dB return loss bandwidths of 150 MHz from 2.375 to 2.525 GHz, 725 MHz from 3.075 to 3.8 GHz, and 1.9 GHz from 5.0 to 6.9 GHz has been achieved. Details of the antenna design as well as the measured and simulated results are presented and discussed.


2016 ◽  
Vol 5 (1) ◽  
pp. 46 ◽  
Author(s):  
P. Kumar ◽  
J. L. Masa-Campos

This paper presents the design, fabrication and measurement of dual polarized microstrip patch antennas for ultra wideband (UWB) applications with notch at 5-6 GHz band. The proposed antenna rejects the wireless local area network (WLAN) signals and work properly in the entire remaining ultra-wideband. Two antennas are designed for two different frequency bands of ultra wideband and both antennas together produce the entire ultra wideband with notch at 5-6 GHz band. The antennas are fed by a 50 coaxial probe and the entire design is optimized using CST Microwave Studio. The bandwidth of 3.1-5 GHz is achieved by the optimized design of Antenna-1 and the bandwidth of 6 -10.6 GHz is achieved by the optimized design of Antenna-2. The bandwidth of the optimized combined antenna is 3.1-10.6 GHz with elimination of the 5-6 GHz band. Both antennas are simulated, developed and measured. The simulated and measured results are presented. The two designed dual polarized antennas i.e. Antenna-1 and Antenna-2 can be used for 3.1-5 GHz band and 6-10.6 GHz band dual polarized applications, respectively, and the combined antenna structure can be used for UWB dual polarized applications with elimination of 5-6 GHz band signals.


2015 ◽  
Vol 9 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Murli Manohar ◽  
Rakhesh Singh Kshetrimayum ◽  
Anup Kumar Gogoi

In this paper, a band-notched compact printed monopole super wideband (SWB) antenna has been designed and fabricated. The SWB antenna composed of a radiating patch with a 50 Ω triangular tapered feed line which is connected through a feed region, and a chamfered ground plane (CGP), that covers the frequency band from 0.9–100 GHz (ratio bandwidth of 111.1:1) with a reflection coefficient |S11| < −10 dB, except in the notched band of 4.7–6 GHz for Wireless local area network IEEE 802.11a and HIPERLAN/2 WLAN band. To realize the band notch characteristics a C-shape parasitic element is employed near the CGP etched with two symmetrical L-slots and placed under the radiating patch. Proposed antenna structure occupies a relatively small space (30 × 40 × 0.787 mm3) and achieved much wider impedance bandwidth as well as higher gain compared with the existing ultra wideband and SWB antennas.


2015 ◽  
Vol 9 (2) ◽  
pp. 427-436 ◽  
Author(s):  
Rajarshi Sanyal ◽  
Abhirup Patra ◽  
Parthapratim Sarkar ◽  
Santosh Kumar Chowdhury

This paper presents the dual band notch characteristics of Ultra wideband (UWB) monopole antenna. Proposed antenna (30 × 30 mm2) consists of arrow shaped patch and truncated ground plane. Operating range of the proposed antenna (voltage standing wave ratio < 2) is 2.2–11 GHz. In order to achieve dual band stop characteristics, λ/2 open ended angularly separated slit pair has been inserted on the radiator for world interoperability for microwave access (WIMAX) (3.3–3.9 GHz) band rejection performance and wireless local area network (WLAN) (5.1–5.9 GHz) band rejection has been realized by introducing a pair of angularly separated λ/2 conductor backed plane (CBP). Using proper adjustment of angular separation for both slit pair and CBP pair, enhanced band rejection can be achieved for the WIMAX and WLAN band, respectively. The performance of antenna has been investigated in terms of frequency domain and time domain to assess its suitability in UWB communication.


Sign in / Sign up

Export Citation Format

Share Document