Four element triangular dielectric resonator antenna for wireless application

2015 ◽  
Vol 9 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Ravi Kumar Gangwar ◽  
Pinku Ranjan ◽  
Abhishek Aigal

A wideband four element triangular dielectric resonator antenna (TDRA) has been designed and fabricated by using 50 Ω coaxial probe feed. The input and radiation characteristics of the proposed antenna have been extracted through Ansoft HFSS and CST Microwave Studio simulation software and compared with the experimental results. The simulated results have been in good agreement with the experimental results. The proposed antenna characteristics have also been compared with the same dimensions of the single element TDRA, and found enhancement in bandwidth with lower resonant frequency. Its performance has also been compared with same area (equal to proposed antenna) of single element TDRA. The proposed antenna provides nearly 37% bandwidth (|S11| < −10 dB) at a resonant frequency of 5.45 GHz with 4.76 dBi peak gain. The symmetry and uniformity in the radiation patterns is obtained consistently for the entire operating bandwidth. The proposed antenna shows consistently symmetric monopole type radiation pattern with low cross polarization for WLAN (IEEE 802.16) and WiMAX applications. The performance of the proposed antenna has been compared with some similar type of dielectric resonator antenna (DRA) shapes and it has been observed that TDRA is taking very less radiation area for giving better performance than other DRA shapes.

2015 ◽  
Vol 9 (2) ◽  
pp. 411-418 ◽  
Author(s):  
Ravi Kumar Gangwar ◽  
Pinku Ranjan ◽  
Abhishek Aigal

In this paper, a wideband two-segmented four-element triangular dielectric resonator antenna (TDRA) with coaxial probe feed has been proposed. The proposed antenna has been analyzed, optimized, and studied through Ansoft HFSS simulation software. The prototype of the proposed antenna has been fabricated and its input characteristics are measured with the help of R&S Vector Network Analyzer. Good agreement has been obtained between simulated and measured results. The proposed design has been compared with two segments TDRA and found wider bandwidth with lower resonant frequency. The proposed antenna provides monopole-like radiation pattern over the entire bandwidth with nearly 33% bandwidth (return loss ≥10 dB) at a resonant frequency 6.9 GHz and 4.93 dBi peak gain. The proposed antenna is suitable for application of C-band microwave frequencies.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yih-Chien Chen

The-hybrid dielectric resonator antenna consisted of a cylindrical high-permittivity dielectric resonator, a rectangular slot, and two-rectangular patches were implemented. The hybrid dielectric resonator antenna had three resonant frequencies. The lower, middle, and higher resonant frequencies were associated with the rectangular slot, rectangular patches, and dielectric resonator, respectively. Parametric investigation was carried out using simulation software. The proposed hybrid dielectric resonator antenna had good agreement between the simulation results and the measurement results. The hybrid dielectric resonator antenna was implemented successfully for application in 2.4/5.2/5.8 GHz of WLAN and 2.5/3.5/5.5 GHz of WiMAX simultaneously.


2016 ◽  
Vol 9 (3) ◽  
pp. 639-647
Author(s):  
Pinku Ranjan ◽  
Ravi Kumar Gangwar

A novel quarter cylindrical dielectric resonator antenna (q-CDRA) has been introduced by splitting four uniform quarters from a cylinder. q-CDRA has been designed and validated with theoretical analysis. Two and four element q-CDRAs have been proposed in composite forms through Ansoft high-frequency structure simulator simulation software and fabricated for experimental investigation. The input characteristics and radiation patterns of the proposed antennas have been studied through simulation and compared with the measured ones. The |S11| characteristics of the proposed antennas have been compared with each other. The four-element composite q-CDRA has wide impedance bandwidth (|S11| ≤ −10 dB) of 58.15% with monopole-like radiation pattern as compared with other q-CDRAs. The two and four elements q-CDRAs have symmetric monopole-like radiation patterns with linear polarization for whole operating bandwidth (4.5–8.6 GHz). The proposed composite q-CDRAs may find suitable applications in WLAN and WiMAX band.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yacouba Coulibaly ◽  
Mourad Nedil ◽  
Larbi Talbi ◽  
Tayeb A. Denidni

A new broadband and high gain dielectric resonator antenna for millimeter wave is presented. The investigated antenna configuration consists of a periodic square ring frequency selective surfaces on a superstrate, an aperture-coupled scheme feed, an intermediate substrate, and a cylindrical dielectric resonator. This antenna is designed to cover the ISM frequency band at 60 GHz (57 GHz–64 GHz). It was numerically designed using CST microwave Studio simulation software package. Another prototype with a plain dielectric superstrate is also studied for comparison purposes. A bandwidth of 13.56% at the centered frequency of 61.34 GHz and a gain of 11 dB over the entire ISM band have been achieved. A maximum gain of 14.26 dB is obtained at 60 GHz. This is an enhancement of 9 dB compared to a single DRA. HFSS is used to validate our antenna designs. Good agreement between the results of the two softwares is obtained. With these performances, these antennas promise to be useful in the design of future wireless underground communication systems operating in the unlicensed 60 GHz frequency band.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950208
Author(s):  
Pinku Ranjan ◽  
Ravi Kumar Gangwar

The aim of the paper is to propose a design and analysis of multi-element multi-segment triangular dielectric resonator antenna (MEMS TDRA) with Radar Cross-Section (RCS). The proposed antenna has been excited through coaxial probe feed. The coaxial probe feed excites TM[Formula: see text] dominant mode fields within the TDR elements. A general guideline for wide bandwidth and high gain has been prepared for designing of MEMS TDRA. The model of the proposed MEMS TDRA has been studied through simulation (Ansoft HFSS software) and fabricated for measurement. The simulated antenna performance has good agreement with the measured one. The proposed MEMS TDRA performance has been compared with some similar type of previously published structure and found wider bandwidth and higher gain. The proposed MEMS TDRA provides monopole-like radiation pattern with nearly 39% bandwidth ([Formula: see text] dB). The average gain of 6.0 dBi has been found over the entire bandwidth. The RCS analysis has been performed for monostatic and bistatic modes at different frequencies and angles. The proposed antenna is appropriate for WLAN and WiMAX applications.


Author(s):  
U. Illahi ◽  
J. Iqbal ◽  
M. I. Sulaiman ◽  
M Alam ◽  
M. S. Mazliham ◽  
...  

<p class="Abstract">A rectangular dielectric resonator antenna (DRA) has been excited by an off-set single conformal metal strip. By using such excitation technique two degenerate resonant modes, TExδ11 and TEy1δ1 of the rectangular DRA have been excited to achieve circular polarization (CP). A CP bandwidth of ~ 5.2% in conjunction with a wide impedance matching bandwidth of ~ 54% has been provided by the proposed DRA configuration. The antenna design has been simulated using computer simulation technology (CST). Antenna prototype has been built to verify the impedance matching bandwidth. Far field parameters have been optimized and verified using two simulation techniques in CST i.e. finite integration technique (FIT) and finite element method (FEM). A good agreement between the simulated and measured result has been observed for S11. Similarly a very good resemblance between the far field results from FIT and FEM have been demonstrated.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Xuping Li ◽  
Yabing Yang ◽  
Fei Gao ◽  
Hanqing Ma ◽  
Xiaowei Shi

A compact dielectric resonator antenna (DRA) suitable for wideband applications is presented in this paper. The proposed antenna is mainly composed by a notched cylindrical dielectric resonator (DR) coated with a metal surface on the top and a finite ground plane where the presented DR is placed. This antenna is very simple in structure and has a very low overall height of0.14λminat its lowest operation frequency. A comprehensive parametric study is carried out based on Ansoft HFSS to optimize the bandwidth. The proposed antenna has been successfully simulated, optimized, fabricated, and measured. The measurement results demonstrate that the proposed design produces an impedance bandwidth of more than 75%, ranging from 2.9 GHz to 6.7 GHz for the reflection coefficient less than −10 dB. In particular, consistent broadside radiation patterns, stable gain, and high radiation efficiency are also obtained within the operation frequency band.


Sign in / Sign up

Export Citation Format

Share Document