A geometry-based stochastic approach to emulate V2V communications’ main propagation channel metrics

2016 ◽  
Vol 8 (3) ◽  
pp. 455-461 ◽  
Author(s):  
Jessen Narrainen ◽  
Philippe Besnier ◽  
Martine Gatsinzi Ibambe

In order to evaluate a communication system, we need to model the propagation channel of the relevant environments pertaining to that communication. In this paper, we propose a Geometry-Based Stochastic Channel Modeling approach to build up propagation channel simulations to assess the performance of vehicle-to-vehicle wireless communications. Our methodology allows the simulation of dynamic scenarios, with an electromagnetic simulator, to emulate typical propagation environments (rural, highway and urban-like propagation channels). Simple metallic plates are used to represent scatterers in the simulated geometric configurations. The common characteristics defining a propagation channel such as delay spread, angle of arrival distribution, and the delay-Doppler spectrum are obtained through adjustment of the number and location of those simple metallic plates.

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Irina Sirkova

AbstractThis work provides an introduction to one of the most widely used advanced methods for wave propagation modeling, the Parabolic Equation (PE) method, with emphasis on its application to tropospheric radio propagation in coastal and maritime regions. The assumptions of the derivation, the advantages and drawbacks of the PE, the numerical methods for solving it, and the boundary and initial conditions for its application to the tropospheric propagation problem are briefly discussed. More details are given for the split-step Fourier-transform (SSF) solution of the PE. The environmental input to the PE, the methods for tropospheric refractivity profiling, their accuracy, limitations, and the average refractivity modeling are also summarized. The reported results illustrate the application of finite element (FE) based and SSF-based solutions of the PE for one of the most difficult to treat propagation mechanisms, yet of great significance for the performance of radars and communications links working in coastal and maritime zones — the tropospheric ducting mechanism. Recent achievements, some unresolved issues and ongoing developments related to further improvements of the PE method application to the propagation channel modeling in sea environment are highlighted.


2016 ◽  
Vol 65 (9) ◽  
pp. 6831-6841 ◽  
Author(s):  
Hirokazu Kamoda ◽  
Shoichi Kitazawa ◽  
Naoya Kukutsu ◽  
Kiyoshi Kobayashi ◽  
Tomoaki Kumagai

Author(s):  
Jean-Marc Conrat ◽  
Patrice Pajusco

This article aims to provide readers with a physical understanding of the propagation channel that is complementary to mathematical channel modeling. It presents an analysis of the directional propagation channel based on radiophotos. Radiophotos are graphical objects where directions of arrival are superimposed on three-dimensional (3D) panoramic photographs. The interaction between electro magnetic waves and the environment is immediately identified with these representations. This paper focuses on the direction of arrival at mobile in an urban macrocell environment. The first radiophoto collection illustrates the major propagation phenomena such as reflection, diffraction, or street canyoning. The second collection illustrates typical propagation channel profiles that are classified according to delay, azimuth, and elevation spread values. The paper also describes an original panorama-based method for estimating noise level in the azimuth–elevation domain.


2018 ◽  
Vol 66 (11) ◽  
pp. 6225-6232
Author(s):  
Yifan Chen ◽  
Qingfeng Zhang ◽  
Rui Wang ◽  
Putri Santi Anwar ◽  
Limin Huang ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1556
Author(s):  
Manuel García Sánchez ◽  
Alejandro Santomé Valverde ◽  
Isabel Expósito

The 28 GHz band is one of the available bands in Frequency Range 2 (FR2), above 6 GHz, for fifth generation (5G) communications. The propagation characteristics at this frequency band, together with the bandwidth requirements of 5G communications, make it suitable for ultra-dense smart cell networks. In this paper, we investigate the performance of a radio channel in the presence of moving, scattering sources for a small cell at 28 GHz, located at a bus stop. To do so, measurements of the channel complex impulse response with a sweep time delay cross-correlation sounder were made and then used to examine the distribution of multipath components. Besides analyzing the delay spread caused by the channel, we also evaluate the impact on the Doppler spectrum (DS) caused by the vehicles passing near the bus stop. We show that delay components are grouped in clusters exhibiting exponential decay power. We also show that the DS varies with time as vehicles pass by, so the channel cannot be considered stationary. We propose an empirical DS model, where the model parameter should change with time to describe the non-stationary nature of the radio channel. We have also found that the DS with maximum spread is similar for channel contributions in different delay clusters.


2020 ◽  
Author(s):  
Abdulkadir Celik ◽  
Khaled N. Salama ◽  
Ahmed Eltawil

<div>The Internet of Bodies (IoB) is an imminent extension to the vast Internet of things domain, where interconnected devices (e.g., worn, implanted, embedded, swallowed, etc.) located in-on-and-around the human body form a network. Thus, the IoB can enable a myriad of services and applications for a wide range of sectors, including medicine, safety, security, wellness, entertainment, to name but a few. Especially considering the recent health and economic crisis caused by novel coronavirus pandemic, a.k.a. COVID-19, the IoB can revolutionize today's public health and safety infrastructure. Nonetheless, reaping the full benefit of IoB is still subject to addressing related risks, concerns, and challenges. Hence, this survey first outlines the IoB requirements and related communication and networking standards. Considering the lossy and heterogeneous dielectric properties of the human body, one of the major technical challenges is characterizing the behavior of the communication links in-on-and-around the human body. Therefore, this paper presents a systematic survey of channel modeling issues for various link types of human body communication (HBC) channels below 100 MHz, the narrowband (NB) channels between 400 MHz and 2.5 GHz, and ultra-wideband (UWB) channels from 3 to 10 GHz. After explaining bio-electromagnetics attributes of the human body, physical and numerical body phantoms are presented along with electromagnetic propagation tool models. Then, the first-order (i.e., path loss, shadowing, multipath fading) and the second-order (i.e., delay spread, power delay profile, average fade duration, level crossing rate, etc.) channel statistics for NB and UWB channels are covered with a special emphasis on body posture, mobility, and antenna effects. For the HBC channels, three different coupling methods are considered: capacitive, galvanic, and magnetic. Based on these coupling methods, four different channel modeling methods (i.e., analytical, numerical, circuit, and empirical) are investigated, and electrode effects are discussed. Lastly, interested readers are provided with open research challenges and potential future research directions.</div><div><br></div>


2020 ◽  
Author(s):  
Abdulkadir Celik ◽  
Khaled N. Salama ◽  
Ahmed Eltawil

<div>The Internet of Bodies (IoB) is an imminent extension to the vast Internet of things domain, where interconnected devices (e.g., worn, implanted, embedded, swallowed, etc.) located in-on-and-around the human body form a network. Thus, the IoB can enable a myriad of services and applications for a wide range of sectors, including medicine, safety, security, wellness, entertainment, to name but a few. Especially considering the recent health and economic crisis caused by novel coronavirus pandemic, a.k.a. COVID-19, the IoB can revolutionize today's public health and safety infrastructure. Nonetheless, reaping the full benefit of IoB is still subject to addressing related risks, concerns, and challenges. Hence, this survey first outlines the IoB requirements and related communication and networking standards. Considering the lossy and heterogeneous dielectric properties of the human body, one of the major technical challenges is characterizing the behavior of the communication links in-on-and-around the human body. Therefore, this paper presents a systematic survey of channel modeling issues for various link types of human body communication (HBC) channels below 100 MHz, the narrowband (NB) channels between 400 MHz and 2.5 GHz, and ultra-wideband (UWB) channels from 3 to 10 GHz. After explaining bio-electromagnetics attributes of the human body, physical and numerical body phantoms are presented along with electromagnetic propagation tool models. Then, the first-order (i.e., path loss, shadowing, multipath fading) and the second-order (i.e., delay spread, power delay profile, average fade duration, level crossing rate, etc.) channel statistics for NB and UWB channels are covered with a special emphasis on body posture, mobility, and antenna effects. For the HBC channels, three different coupling methods are considered: capacitive, galvanic, and magnetic. Based on these coupling methods, four different channel modeling methods (i.e., analytical, numerical, circuit, and empirical) are investigated, and electrode effects are discussed. Lastly, interested readers are provided with open research challenges and potential future research directions.</div><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document