sweep time
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259438
Author(s):  
Sushank Chaudhary ◽  
Lunchakorn Wuttisittikulkij ◽  
Muhammad Saadi ◽  
Abhishek Sharma ◽  
Sattam Al Otaibi ◽  
...  

Autonomous vehicles are regarded as future transport mechanisms that drive the vehicles without the need of drivers. The photonic-based radar technology is a promising candidate for delivering attractive applications to autonomous vehicles such as self-parking assistance, navigation, recognition of traffic environment, etc. Alternatively, microwave radars are not able to meet the demand of next-generation autonomous vehicles due to its limited bandwidth availability. Moreover, the performance of microwave radars is limited by atmospheric fluctuation which causes severe attenuation at higher frequencies. In this work, we have developed coherent-based frequency-modulated photonic radar to detect target locations with longer distance. Furthermore, the performance of the proposed photonic radar is investigated under the impact of various atmospheric weather conditions, particularly fog and rain. The reported results show the achievement of significant signal to noise ratio (SNR) and received power of reflected echoes from the target for the proposed photonic radar under the influence of bad weather conditions. Moreover, a conventional radar is designed to establish the effectiveness of the proposed photonic radar by considering similar parameters such as frequency and sweep time.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Syed Afaq Ali Shah ◽  
Muhammad Hassan Sayyad ◽  
Jinghua Sun ◽  
Zhongyi Guo

Due to the tremendous increase in power conversion efficiency (PCE) of organic–inorganic perovskite solar cells (PSCs), this technology has attracted much attention. Despite being the fastest-growing photovoltaic technology to date, bottlenecks such as current density–voltage (J–V) hysteresis have significantly limited further development. Current density measurements performed with different sweep scan speeds exhibit hysteresis and the photovoltaic parameters extracted from the current density–voltage measurements for both scan directions become questionable. A current density–voltage measurement protocol needs to be established which can be used to achieve reproducible results and to compare devices made in different laboratories. In this work, we report a hysteresis analysis of a hole-transport-material-free (HTM-free) carbon-counter-electrode-based PSC conducted by current density–voltage and impedance spectra measurements. The effect of sweep scan direction and time delay was examined on the J–V characteristics of the device. The hysteresis was observed to be strongly sweep scan direction and time delay dependent and decreased as the delay increased. The J–V analysis conducted in the reverse sweep scan direction at a lower sweep time delay of 0.2 s revealed very large increases in the short circuit current density and the power conversion efficiency of 57.7% and 56.1%, respectively, compared with the values obtained during the forward scan under the same conditions. Impedance spectroscopy (IS) investigations were carried out and the effects of sweep scan speed, time delay, and frequency were analyzed. The hysteresis was observed to be strongly sweep scan direction, sweep time delay, and frequency dependent. The correlation between J–V and IS data is provided. The wealth of photovoltaic and impendence spectroscopic data reported in this work on the hysteresis study of the HTM-free PSC may help in establishing a current density–voltage measurement protocol, identifying components and interfaces causing the hysteresis, and modeling of PSCs, eventually benefiting device performance and long-term stability.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1556
Author(s):  
Manuel García Sánchez ◽  
Alejandro Santomé Valverde ◽  
Isabel Expósito

The 28 GHz band is one of the available bands in Frequency Range 2 (FR2), above 6 GHz, for fifth generation (5G) communications. The propagation characteristics at this frequency band, together with the bandwidth requirements of 5G communications, make it suitable for ultra-dense smart cell networks. In this paper, we investigate the performance of a radio channel in the presence of moving, scattering sources for a small cell at 28 GHz, located at a bus stop. To do so, measurements of the channel complex impulse response with a sweep time delay cross-correlation sounder were made and then used to examine the distribution of multipath components. Besides analyzing the delay spread caused by the channel, we also evaluate the impact on the Doppler spectrum (DS) caused by the vehicles passing near the bus stop. We show that delay components are grouped in clusters exhibiting exponential decay power. We also show that the DS varies with time as vehicles pass by, so the channel cannot be considered stationary. We propose an empirical DS model, where the model parameter should change with time to describe the non-stationary nature of the radio channel. We have also found that the DS with maximum spread is similar for channel contributions in different delay clusters.


2020 ◽  
Author(s):  
Patrick Judge ◽  
Erika L. Sesti ◽  
Nicholas Alaniva ◽  
Edward P. Saliba ◽  
Lauren Price ◽  
...  

Continuous wave (CW) dynamic nuclear polarization (DNP) is used with magic angle spinning (MAS) to enhance the typically poor sensitivity of nuclear magnetic resonance (NMR) by orders of magnitude. In a recent publication we show that further enhancement is obtained by using a frequency-agile gyrotron to chirp incident microwave frequency through the electron resonance frequency during DNP transfer. Here we characterize the effect of chirped MAS DNP by investigating the sweep time, sweep width, center-frequency, and electron Rabi frequency of the chirps. We show the advantages of chirped DNP with a trityl nitroxide biradical, and a lack of improvement with chirped DNP using AMUPol, a nitroxide biradical. Frequency-chirped DNP on a model system of urea in a cryoprotecting matrix yields an enhancement of 142, 21% greater than that obtained with CW DNP. We then go beyond this model system and apply chirped DNP to intact human cells. In human Jurkat cells, frequency-chirped DNP improves enhancement by 24% over CW DNP. The characterization of the chirped DNP effect reveals instrument limitations on sweep time and sweep width, promising even greater increases in sensitivity with further technology development. These improvements in gyrotron technology, frequency-agile methods, and in cell applications are expected to play a significant role in the advancement of MAS DNP.<br>


2020 ◽  
Author(s):  
Patrick Judge ◽  
Erika L. Sesti ◽  
Nicholas Alaniva ◽  
Edward P. Saliba ◽  
Lauren Price ◽  
...  

Continuous wave (CW) dynamic nuclear polarization (DNP) is used with magic angle spinning (MAS) to enhance the typically poor sensitivity of nuclear magnetic resonance (NMR) by orders of magnitude. In a recent publication we show that further enhancement is obtained by using a frequency-agile gyrotron to chirp incident microwave frequency through the electron resonance frequency during DNP transfer. Here we characterize the effect of chirped MAS DNP by investigating the sweep time, sweep width, center-frequency, and electron Rabi frequency of the chirps. We show the advantages of chirped DNP with a trityl nitroxide biradical, and a lack of improvement with chirped DNP using AMUPol, a nitroxide biradical. Frequency-chirped DNP on a model system of urea in a cryoprotecting matrix yields an enhancement of 142, 21% greater than that obtained with CW DNP. We then go beyond this model system and apply chirped DNP to intact human cells. In human Jurkat cells, frequency-chirped DNP improves enhancement by 24% over CW DNP. The characterization of the chirped DNP effect reveals instrument limitations on sweep time and sweep width, promising even greater increases in sensitivity with further technology development. These improvements in gyrotron technology, frequency-agile methods, and in cell applications are expected to play a significant role in the advancement of MAS DNP.<br>


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Binh Van Nguyen ◽  
Hyoyoung Jung ◽  
Kiseon Kim

This paper investigates the antijamming performance of the NR-DCSK system. We consider practical jamming environments including broadband jamming (BBJ), partial-time jamming (PTJ), tone jamming (TJ), and sweep jamming (SWJ). We first analytically derived the bit error rates of the system under the BBJ and the PTJ. Our results show that the system performances under these two jamming environments are enhanced as P increases, where P is the parameter of the NR-DCSK modulation scheme denoting the number of times a chaotic sample is repeated. In addition, our results demonstrate that, for the PTJ, the optimal value of the jamming factor is close to zero when the jamming power is small; however, it increases and approaches one as the jamming power enlarges. We then investigate the performance of the system under the TJ and the SWJ via Monte-Carlo simulations. Our simulations show that single-tone jamming causes a more significant performance degradation than multitone jamming. Moreover, we point out that the system performance is significantly degraded when the starting frequency of the sweep jammer is close to the carrier frequency of the transmitted signals, the sweep bandwidth is small, and the sweep time is half of the transmitted bit duration.


2018 ◽  
Vol 185 ◽  
pp. 03002 ◽  
Author(s):  
Yuri Kudasov ◽  
Roman Kozabaranov

Multiple field-induced plateaus in αCoV2O6 at low temperatures were revealed earlier by M. Lenertz et al. [J. Phys. Chem. C 115, 17190 (2011)] and carefully investigated recently by M. Nandi and P. Mandal [J. Appl. Phys. 119, 133904 (2016)]. Four equidistant steps were observed in the magnetization curve. We present a model to describe this phenomenon. A magnetic structure of this substance is formed by highly anisotropic triangular lattice of Ising chains running along the b axis. Due to a three-fold degeneracy of three-sublattice magnetic ordering, domain boundaries appear. Their transformation under magnetic field variation leads to two additional steps in the 1/3 magnetization plateau and gives rise to complex magnetic behavior observed experimentally. The domain structure in αCoV2O6 occurs to be strongly anisotropic because a lifetime of the metastable states depends greatly on the configuration orientation. A strong dependence of the magnetization curve on magnetic field sweep time is predicted.


2017 ◽  
Vol 870 ◽  
pp. 263-268 ◽  
Author(s):  
Shu Tsung Hsu ◽  
Yean San Long ◽  
Teng Chun Wu

The major differences between dye sensitized solar cell (DSSC) and p-n junction solar cells are spectrum absorption range, photoelectric conversion response time and standard test condition (STC). The operation principle of DSSC is using layers of organic molecules subject to lighting after excitation electronic then pass to the inorganic/organic layer of the wide energy gap nanolayer and voltage. Therefore, characterizations of DSSC are important in order to clarify how to determine its performance accurately. Such measurement requires considering the different level lighting on each very slow temporal response (hysteresis and transient) in its current-voltage (I-V) curves, which are dependent on the voltage sweep direction, even when the sweep time is the order of seconds. This paper presents a new test method for determining I-V performance of DSSC, which differs with IEC 60904-1 addressed on single and multi-junction samples. Results were applied to SEMI Doc. 5597 and released as SEMI PV57 by voting in 2014. Consequently, emerging photovoltaic device makers and buyers, or any other party interested, can thus have a common testing standard to refer to when desired.


2017 ◽  
Vol 822 ◽  
Author(s):  
Nathan Martin ◽  
Chris Roh ◽  
Suhail Idrees ◽  
Morteza Gharib

A comparison between swimming by flapping and by periodic contractions is conducted. Swimming by flapping is approximated as a pitching plate while swimming by periodic contractions is approximated as clapping plates. A direct comparison is made between the two propulsion mechanisms by utilizing a machine that can operate in either a flapping or a clapping mode between Reynolds numbers of 1880 and 11 260 based on the average plate tip velocity and span. The average thrust generated and the average input power required per cycle are compared between cases where the total sweep angle and the total sweep time are identical. Variation of the kinematics results in a similar thrust between the two mechanisms, but a greater power is required for clapping. Variation of the flexibility results in a consistent decrease in the required power for clapping and a decrease in thrust at high flexibility. Variation of the duty cycle for clapping rigid plates results in a significant increase in thrust and a significant decrease in the required power. Overall, the results suggest that flapping propulsion is the more effective propulsion mechanism within the range of Reynolds numbers tested.


Author(s):  
Steffen Scherr ◽  
Serdal Ayhan ◽  
Jonas Hofmann ◽  
Mario Pauli ◽  
Thomas Zwick

Sign in / Sign up

Export Citation Format

Share Document