Highly compact UWB bandpass filter based on composite right/left-handed transmission line and meander fractal like ring slot in ground

2016 ◽  
Vol 9 (5) ◽  
pp. 1037-1044
Author(s):  
Babu Lal Shahu ◽  
Srikanta Pal ◽  
Neela Chattoraj ◽  
Dileep Kumar Upadhyay

An ultra-wideband (UWB) highly compact bandpass filter with extremely high passband bandwidth is presented. The proposed structure is made using three-staged stepped-impedance lines and a composite right/left-handed transmission line (CRLH-TL) synthesized with meander fractal like ring slot in the ground and series capacitive gap in conductor strip. The capacitive gap in conductor strip and meander fractal like ring slot in the ground plane play major role for controlling the lower and higher cut-off frequencies. The equivalent circuit model of proposed filter is demonstrated and lumped parameters are extracted. A prototype is fabricated to experimentally validate the performance of proposed filter. The proposed UWB filter has extremely wide −10 dB return loss passband bandwidth from 3.14 to 18.26 GHz with relative bandwidth of 142% and insertion loss better than 0.5 dB. Also it achieves a wide upper-stopband from 19.7 to 24.4 GHz with insertion loss better than 13.0 dB, return loss <1.5 dB and sharpened rejection skirts outside the passband at both lower and upper frequency ends. Good agreement is found between simulated and measured results with measured group delay variation in the passband <0.65 ns.

Author(s):  
Gaurav Saxena ◽  
Priyanka Jain ◽  
Y. K. Awasthi

Abstract In this paper, a ultra-wideband (UWB) bandpass filter with stopband characteristics is presented using a multi-mode resonator (MMR) technique. An MMR is formed by loading three dumbbell-shaped (Mickey and circular) shunt stubs placed in the center and two symmetrical locations from ports, respectively. Three circular and arrowhead defected ground structures on the ground plane are introduced to achieve UWB bandwidth with a better roll-off rate. The proposed filter exhibits stopband characteristics from 10.8 to 20 GHz with a 0.4 dB return loss. The group delay and roll-off rate of the designed filter are <0.30 ns in the passband and 16 dB/GHz at lower and higher cut-off frequencies, respectively. The dimension of the filter is 0.74λg × 0.67λg mm2 and was fabricated on a cost-effective substrate. All simulated results are verified through the experimental results.


2013 ◽  
Vol 385-386 ◽  
pp. 1292-1295
Author(s):  
Xu Han ◽  
Jian Hua Xu

A planar power divider operating over the whole Ku-band is presented. The proposed device utilizes a T-microstrip junction combined with defected ground structure and an elliptical patch at the centre of the T-junction. An isolation resistor is connected across the slotted ground plane. The simulated results of the divider show equal power split, insertion loss is less than 0.3dB, return loss of all ports are better than 15dB, and isolation is better than 15dB over the whole Ku-band.


2013 ◽  
Vol 446-447 ◽  
pp. 865-868
Author(s):  
Ya Lin Guan ◽  
Xin Kun Tang ◽  
Shi Lei Zhou

In this paper, a novel bandpass filter (BPF) using the composite right/left-handed transmission line (CRLH-TL) theory is presented.The composite right/left-handed TL with the high-pass characters of left-handed transmission line (LH-TL) and the low-pass characters of right-handed transmission line (RH-TL) are used to construct the bandpass filter.Using this theory,we design a bandpass filter which have an obvious band pass response with a wide passband range from 5.1to 12.9GHz and a low insertion loss of less than 3.1dB. The relative bandwidth is close to 110%. Simulation using ADS demonstrated the viability of the approach.


2017 ◽  
Vol 9 (9) ◽  
pp. 1821-1826 ◽  
Author(s):  
Dharmendra Kumar Jhariya ◽  
Akhilesh Mohan ◽  
Manoranjan Sinha

In this paper, a novel two-stage fish spear-shaped multimode resonator (MMR)-based ultra wideband (UWB) bandpass filter (BPF) is presented. The fish spear-shaped MMR is loaded with stepped impedance resonator in order to improve the out-of-band performance of the proposed filter. The proposed UWB BPF filter has fractional bandwidth better than 110%. In order to validate the present design approach, the filter is fabricated on RT/Duroid 5880 having dielectric constant 2.2, thickness 0.787 mm and loss tangent of 0.0009. The measured passband bandwidth of the filter is from 3.3 to 11.85 GHz, with insertion loss of 1.5 dB and return loss better than 12 dB in the passband. The proposed filter has sharp selectivity and upper stopband with 20 dB attenuation from 12 to 24 GHz.


2012 ◽  
Vol 460 ◽  
pp. 66-69
Author(s):  
Bing Gang Xiao ◽  
Peng Ye ◽  
Zhi Yi Xie ◽  
Han Liu

As one of the most important devices in the ultra-wideband (UWB) wireless communication system, UWB filter has received more and more attention with the rapid development of UWB wireless communication technology. In this paper, an ultra-wideband bandpass filter based on composite right/left handed transmission line (CRLH TL) is designed. The filter are simulated and optimized by the industry-standard simulation tool HFSS to examine the correctness and effectiveness of the design with the simulated scattering parameters S11 and S21.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Yuan Cao ◽  
Zhongbao Wang ◽  
Shaojun Fang

To directly obtain physical dimensions of parallel coupled microstrip lines with a floating ground-plane conductor (PCMLFGPC), an accurate synthesis model based on an artificial neural network (ANN) is proposed. The synthesis model is validated by using the conformal mapping technique (CMT) analysis contours. Using the synthesis model and the CMT analysis, the PCMLFGPC having equal even- and odd-mode phase velocities can be obtained by adjusting the width of the floating ground-plane conductor. Applying the method, a 7 dB coupler with the measured isolation better than 27 dB across a wide bandwidth (more than 120%), a 90° Schiffman phase shifter with phase deviation ±2.5° and return loss more than 17.5 dB covering 63.4% bandwidth, and a bandpass filter with completely eliminated second-order spurious band are implemented. The performances of the current designs are superior to those of the previous components configured with the PCMLFGPC.


Sign in / Sign up

Export Citation Format

Share Document