Design of two-stage fish spear-shaped UWB bandpass filter with sharp selectivity and good out-of-band performances

2017 ◽  
Vol 9 (9) ◽  
pp. 1821-1826 ◽  
Author(s):  
Dharmendra Kumar Jhariya ◽  
Akhilesh Mohan ◽  
Manoranjan Sinha

In this paper, a novel two-stage fish spear-shaped multimode resonator (MMR)-based ultra wideband (UWB) bandpass filter (BPF) is presented. The fish spear-shaped MMR is loaded with stepped impedance resonator in order to improve the out-of-band performance of the proposed filter. The proposed UWB BPF filter has fractional bandwidth better than 110%. In order to validate the present design approach, the filter is fabricated on RT/Duroid 5880 having dielectric constant 2.2, thickness 0.787 mm and loss tangent of 0.0009. The measured passband bandwidth of the filter is from 3.3 to 11.85 GHz, with insertion loss of 1.5 dB and return loss better than 12 dB in the passband. The proposed filter has sharp selectivity and upper stopband with 20 dB attenuation from 12 to 24 GHz.

2016 ◽  
Vol 9 (5) ◽  
pp. 1037-1044
Author(s):  
Babu Lal Shahu ◽  
Srikanta Pal ◽  
Neela Chattoraj ◽  
Dileep Kumar Upadhyay

An ultra-wideband (UWB) highly compact bandpass filter with extremely high passband bandwidth is presented. The proposed structure is made using three-staged stepped-impedance lines and a composite right/left-handed transmission line (CRLH-TL) synthesized with meander fractal like ring slot in the ground and series capacitive gap in conductor strip. The capacitive gap in conductor strip and meander fractal like ring slot in the ground plane play major role for controlling the lower and higher cut-off frequencies. The equivalent circuit model of proposed filter is demonstrated and lumped parameters are extracted. A prototype is fabricated to experimentally validate the performance of proposed filter. The proposed UWB filter has extremely wide −10 dB return loss passband bandwidth from 3.14 to 18.26 GHz with relative bandwidth of 142% and insertion loss better than 0.5 dB. Also it achieves a wide upper-stopband from 19.7 to 24.4 GHz with insertion loss better than 13.0 dB, return loss <1.5 dB and sharpened rejection skirts outside the passband at both lower and upper frequency ends. Good agreement is found between simulated and measured results with measured group delay variation in the passband <0.65 ns.


In this paper, an interdigital coupled microstrip bandpass filter incorporated with shorted stub multi-mode resonator at ultra-wideband spectrum is presented. Proposed filter is characterized by its ultra compactness achieved through multi-mode resonator. The proposed filter is incorporated with interdigitated transmission line based on Lange Coupler topology. This structure enhances capacitive coupling between feed line and MMR which improves lower frequency selectivity of BPF. The parameters viz. fractional bandwidth of 105%, return loss above 20 dB and insertion loss below 1 dB at centre frequency of 4.875 GHz are recorded. The bandwidth of the filter is measured to be 5.15 GHz (2.3 to 7.45 GHz). The filter shows good linearity with its group delay recorded 0.2 ns with small variations of 0.1 ns at maximum in its passband. The compactness of proposed filter makes it suitable for various modern wireless applications.


2018 ◽  
Vol 10 (4) ◽  
pp. 405-411 ◽  
Author(s):  
Salif N. Dembele ◽  
Ting Zhang ◽  
Jingfu Bao ◽  
Denis Bukuru

AbstractA dual closed-loop stepped impedance resonator (DCLSIR) is investigated and used in designing a compact microstrip bandpass filter (BPF). The proposed DCLSIR is symmetrical; as a result, the symmetric characteristics of the resonator have been used. The design equations are derived and used to support the circuit design. The center frequency, position of transmission zeros, and fractional bandwidth (FBW) are easily tuned by changing the physical dimensions of the resonator. Three transmission zeros are generated to improve the performance in the upper stopband. A DCLSIR prototype BPF is fabricated with a center frequency of 9.3 GHz, and evaluated to validate the design concept. The measured FBW is 9.25%, the insertion loss is 1.58 dB, and the return loss is over 17 dB. The measurement results agree well with the simulation results.


Author(s):  
Gaurav Saxena ◽  
Priyanka Jain ◽  
Y. K. Awasthi

Abstract In this paper, a ultra-wideband (UWB) bandpass filter with stopband characteristics is presented using a multi-mode resonator (MMR) technique. An MMR is formed by loading three dumbbell-shaped (Mickey and circular) shunt stubs placed in the center and two symmetrical locations from ports, respectively. Three circular and arrowhead defected ground structures on the ground plane are introduced to achieve UWB bandwidth with a better roll-off rate. The proposed filter exhibits stopband characteristics from 10.8 to 20 GHz with a 0.4 dB return loss. The group delay and roll-off rate of the designed filter are <0.30 ns in the passband and 16 dB/GHz at lower and higher cut-off frequencies, respectively. The dimension of the filter is 0.74λg × 0.67λg mm2 and was fabricated on a cost-effective substrate. All simulated results are verified through the experimental results.


Frequenz ◽  
2018 ◽  
Vol 72 (11-12) ◽  
pp. 533-537 ◽  
Author(s):  
Jin Xu ◽  
Qi-Hang Cai ◽  
Zhi-Yu Chen

Abstract This paper proposes a wideband bandpass filter (BPF) integrated single-pole double-throw (SPDT) switch by using the capacitively coupled LC resonators with loaded p-i-n diodes. The BPF-integrated on-state channel can be synthesized by using the coupled resonator filter theory, and the off-state channel with high suppression is built due to the misaligned resonant frequencies of LC resonators. As an example, a BPF-integrated SPDT switch is designed and fabricated with the central frequency of 1 GHz and the 3 dB fractional bandwidth of 29.7 %. The on-state channel has a measured insertion loss of 1.23 dB, and a 20 dB rejection wide stopband from 1.47 GHz to 8.6 GHz. The off state channel has a 43 dB suppression around 1 GHz. The isolation between two ports is better than 52.4 dB. The fabricated BPF-integrated SPDT switch size including bias circuits but excluding feeding lines has a compact size of 0.086 λg×0.096 λg.


2016 ◽  
Vol 78 (5-4) ◽  
Author(s):  
Muhammad Syafiq Noor Azizi ◽  
Azahari Salleh ◽  
Adib Othman ◽  
Najmiah Radiah Mohamad ◽  
Nor Azlan Aris ◽  
...  

In this paper, we study behavior of Ultra wideband antenna which is Rectangular Slotted Microstrip Patch Antenna. Then, the antenna operated in proximity of human arm model. Furthermore, the antenna is designed on a FR-4 substrate with dielectric constant of 4.3 and thickness 1.6 mm. This antenna simulated in CST Microwave Studio software. In order to test the antenna, an arm model was numerically modelled. The study shows properties and performances of antenna when it is placed in three situations which in free space, outside and inside of human arm model. The properties of UWB antenna in term of return loss, gain, directivity and radiation pattern in the three situations is simulated and discussed.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850085
Author(s):  
A. Uma Maheswari ◽  
K. Latha

This paper presents a 6-gon-shaped bandpass and notch filters for Cognitive Radio (CR) applications. The bandpass filter consists of a 6-gon-shaped multiple mode resonator with interdigital coupling at both ends. The notch filter is derived from bandpass filter by embedding four identical Embedded Open Stubs (EOS) nearby the multiple mode resonators that introduce narrow band suppression in the desired passband. Such bandpass filter with notching band is required in practical CR systems in order to effectively sense the spectrum and avoid the interference between the systems working in same environment with the same frequency. The filter is simulated using an electromagnetic solver, IE3D. The group delay obtained for bandpass filter is below 0.2[Formula: see text]ns. With the above structural features, the overall dimension of the filter is [Formula: see text][Formula: see text]mm2 and the fractional bandwidth (FBW) of the proposed bandpass filter is more than 100% with optimal performances in terms of insertion loss, return loss, group delay and phase.


2015 ◽  
Vol 8 (7) ◽  
pp. 1031-1035 ◽  
Author(s):  
Ting Zhang ◽  
Fei Xiao ◽  
Xiaohong Tang ◽  
Lei Guo

In this paper, a novel multi-mode resonator is presented, which is formed by cascading several open-circuited transmission line sections with a coupled-line section. Owing to its symmetry, even- and odd-mode analysis methods are applied to analyze its resonance characteristic. Based on this resonator, a microstrip ultra-wide bandwidth (UWB) bandpass filter is designed, fabricated, and measured. The simulated and measured results show that its bandwidth can cover the desired UWB. Return loss in passband is better than −14 dB. This filter is featured by good selectivity and wide stopband. Stopband suppression as low as −40 dB can be achieved within frequency range from 12 to 16 GHz.


2019 ◽  
Vol 8 (3) ◽  
pp. 1028-1035
Author(s):  
Norhudah Seman ◽  
Nazleen Syahira Mohd Suhaimi ◽  
Tien Han Chua

This paper presents the designs of phase shifters for multi-beam Nolen matrix towards the fifth generation (5G) technology at 26 GHz. The low-cost, lightweight and compact size 0° and 45° loaded stubs and chamfered 90°, 135° and 180° Schiffman phase shifters are proposed at 26 GHz. An edge at a corner of the 50 Ω microstrip line Schiffman phase shifter is chamfered to reduce the excess capacitance and unwanted reflection. However, the Schiffman phase shifter topology is not relevant to be applied for the phase shifter less than 45° as it needs very small arc bending at 26 GHz. The stubs are loaded to the phase shifter in order to obtain electrical lengths, which are less than 45°. The proposed phase shifters provide return loss better than 10 dB, insertion loss of -0.97 dB and phase difference imbalance of ± 4.04° between 25.75GHz and 26.25 GHz. The Rogers RT/duroid 5880 substrate with dielectric constant of 2.2 and substrate thickness of 0.254 mm is implemented in the designs.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2315
Author(s):  
Mirosław Magnuski ◽  
Dariusz Wójcik ◽  
Maciej Surma ◽  
Artur Noga

This article presents a novel compact widely tunable bandpass filter. The filter consists of two resonators that are double-coupled, inductively, where the coupling inductances are elements of the input and output networks. The application of double-coupling enabled the transmission zero next to the upper cutoff frequency. This makes the filter useful for applications in preselector networks used in receiving systems with a low to intermediate frequency with the desired channel frequency lower than the image channel frequency. The article shows the practical realisation of the varactor-tuned example filter fabricated as a microstrip planar network of an overall size of 0.03λg × 0.045λg. The tuning range of the proposed filter is from 410 MHz to 880 MHz with the fractional bandwidth equal to 7.5–8.1% and an in-band insertion loss better than −3.4 dB. The achieved IP3 value exceeds 17.5 dBm.


Sign in / Sign up

Export Citation Format

Share Document