conductor strip
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
B. A. Belyaev ◽  
A. M. Serzhantov ◽  
An. A. Leksikov ◽  
Ya. F. Bal’va ◽  
R. G. Galeev

Author(s):  
Ahmed A. Abdel Aziz ◽  
Ali T. Abdel-Motagaly ◽  
Ahmed A. Ibrahim ◽  
Waleed M. A. El Rouby ◽  
Mahmoud A. Abdalla

Abstract In this work, a printed coplanar waveguide (CPW) fed single band antenna based on expanded graphite material is introduced. The proposed antenna is based on a CPW-monopole antenna with a U-shape conductor strip connected with the ground. Expanded graphite, a grade of graphene, is used as a conductor to design the uniplanar antenna over a flexible paper substrate. The antenna is designed for 2.4 GHz applications. The antenna design procedures are discussed. The material preparation and analysis are illustrated. Finally, the antenna fabrication and measurements of the reflection coefficient are discussed. The measured antenna reflection coefficient agrees with the simulated one, ensuring the antenna validity for serving the required applications. The radiation antenna parameters are discussed and simulated results from two-simulation software are included for comparison. The antenna has a simulated gain of 4 dBi and simulated efficiency of around 90% at 2.4 GHz.


Author(s):  
Maksim O. Savishnikov ◽  
Dmitry D. Dmitriev ◽  
Eduard D. Kabanov

The paper presents the results of a study of the design of a miniature band-pass filter based on multi-conductor strip resonators. Using the software for electrodynamic analysis, a sixthorder band-pass filter on seven-conductor resonators was designed and manufactured. Designed filter is characterized by small size and deep repression of the stop band. The measured filter characteristics exceed the characteristics of known analogs. The measured width of the highfrequency stop band of 24 times the center frequency of the bandwidth at the level of suppression at least 160 dB


2016 ◽  
Vol 9 (5) ◽  
pp. 1037-1044
Author(s):  
Babu Lal Shahu ◽  
Srikanta Pal ◽  
Neela Chattoraj ◽  
Dileep Kumar Upadhyay

An ultra-wideband (UWB) highly compact bandpass filter with extremely high passband bandwidth is presented. The proposed structure is made using three-staged stepped-impedance lines and a composite right/left-handed transmission line (CRLH-TL) synthesized with meander fractal like ring slot in the ground and series capacitive gap in conductor strip. The capacitive gap in conductor strip and meander fractal like ring slot in the ground plane play major role for controlling the lower and higher cut-off frequencies. The equivalent circuit model of proposed filter is demonstrated and lumped parameters are extracted. A prototype is fabricated to experimentally validate the performance of proposed filter. The proposed UWB filter has extremely wide −10 dB return loss passband bandwidth from 3.14 to 18.26 GHz with relative bandwidth of 142% and insertion loss better than 0.5 dB. Also it achieves a wide upper-stopband from 19.7 to 24.4 GHz with insertion loss better than 13.0 dB, return loss <1.5 dB and sharpened rejection skirts outside the passband at both lower and upper frequency ends. Good agreement is found between simulated and measured results with measured group delay variation in the passband <0.65 ns.


2015 ◽  
Vol 815 ◽  
pp. 364-368
Author(s):  
N. Khalid ◽  
N.I.M. Nor ◽  
W.M.W. Norhaimi ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy

This paper presents the design and analysis of new proposed topology micro-electro-mechanical system (MEMS) inductor. This new symmetric MEMS inductor is designed to reduce the total length of the conductor strip and hence reduce the resistance of the metal tracks. This results significant increases in the quality (Q) factor of the inductor. In this paper, the MEMS inductor is designed using CoventorWare®, which is powerful software for MEMS computer aided design (CAD), modeling and simulation. Results indicate that new symmetric inductor topology has thehighest Q-factor and it hasbeenimproved bytwo times compared to circular inductor. The analysis revealed that area of the symmetric inductor has reduced by37.5% compared to the circular inductor. Result has proved that the reduction of length of the conductor strip has reduced the resistance of the metal tracks and results in a high Q-factor inductor.


Author(s):  
Tuanjai Archevapanich ◽  
Paitoon Rakluea ◽  
Noppin Anantrasirichai ◽  
Boonchana Purahong ◽  
Vanvisa Chutchavong

Sign in / Sign up

Export Citation Format

Share Document