Quasi-self-complementary ultra-wideband antenna with band rejection characteristics

2018 ◽  
Vol 10 (3) ◽  
pp. 336-344 ◽  
Author(s):  
Rajarshi Sanyal ◽  
Partha Pratim Sarkar ◽  
Santosh Kumar Chowdhury

This article presents a compact novel quasi-self-complementary semi-octagonal-shaped antenna for ultra-wideband (UWB) application. The proposed novel structure is fed by a microstrip line where different rectangular truncation is etched to the ground plane as an impedance matching element, which results for much wider impedance bandwidth (VSWR<2) from 2.9 to 20 GHz. In order to obtain band-notched characteristics at 5.5 GHz, an open-ended, quarter wavelength, spiral-shaped stub is introduced in the vicinity of the truncated part of the ground plane. An equivalent circuit model is adopted to investigate the band rejection characteristics of the ground plane stub. Sharpness of the rejection band can be controlled by maintaining the gap between stub resonator and the slotted periphery of ground plane. The proposed antenna design is validated by experimental measurements.

2020 ◽  
Vol 8 (5) ◽  
pp. 3988-3990

In this paper, A coplanar waveguide (CPW) ultra-wideband(UWB) antenna is designed, analyzed and simulated by computer simulation technology(CST). The proposed antenna is fabricated on FR-4 dielectric substrate. A microstrip feed line is used to excite the antenna.The ground plane is slotted to improve the impedance bandwidth (BW). Here, a rectangular patch is used as radiator and two corners out of four are truncated to improve impedance matching and UWB characterization.This antenna satisfies UWB characteristics like VSWR<2, Return loss(S11)<-10 dB,Gain<5dB and the antenna is operating within the frequency range of 1.59 to 11.87 GHz range which covers whole ultra wideband i.e. 3.1 to 10.6 GHz range.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Stylianos C. Panagiotou ◽  
Stelios C. A. Thomopoulos ◽  
Christos N. Capsalis

Genetic algorithms belong to a stochastic class of evolutionary techniques, whose robustness and global search of the solutions space have made them extremely popular among researchers. They have been successfully applied to electromagnetic optimization, including antenna design as well as smart antennas design. In this paper, extensive reference to literature related antenna design efforts employing genetic algorithms is taking place and subsequently, three novel antenna systems are designed in order to provide realistic implementations of a genetic algorithm. Two novel antenna systems are presented to cover the new GPS/Galileo band, namely, L5 (1176 MHz), together with the L1 GPS/Galileo and L2 GPS bands (1575 and 1227 MHz). The first system is a modified PIFA and the second one is a helical antenna above a ground plane. Both systems exhibit enhanced performance characteristics, such as sufficient front gain, input impedance matching, and increased front-to-back ratio. The last antenna system is a five-element switched parasitic array with a directional beam with sufficient beamwidth to a predetermined direction and an adequate impedance bandwidth which can be used as receiver for WiMax signals.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. Mchbal ◽  
N. Amar Touhami ◽  
H. Elftouh ◽  
A. Dkiouak

A compact ultra-wideband (UWB) multiple input-multiple output (MIMO) antenna with high isolation is designed for UWB applications. The proposed MIMO antenna consists of two identical monopole antenna elements. To enhance the impedance matching, three slots are formed on the ground plane. The arc structure as well as the semicircle with an open-end slot is employed on the radiating elements the fact which helps to extend the impedance bandwidth of the monopole antenna from 3.1 up to 10.6 GHz, which corresponds to the UWB band. A ground branch decoupling structure is introduced between the two elements to reduce the mutual coupling. Simulation and measurement results show a bandwidth range from 3.1 to 11.12 GHz with |S11_|<−15 dB, |S21_|<−20 dB, and ECC < 0.002.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Rahul Yadav

This paper presents a spiral antenna design operating in the frequency range of 1–15 GHz having both selective notch bands and wideband response. The main feed arm of spiral antenna is configured as rectangular monopole of width quarter wavelength to achieve impedance matching with standard 50 Ω excitation. Frequency tuning in the design is achieved by placing varactor diode at an appropriate position along the spiral arms and in the ground plane. The design offers a peak gain of 3.4 dB (simulated) and 3 dB (measured). The unique frequency response of antenna makes its suitable to be used for front-end system of cognitive radio for sensing the spectrum in various modes.


2015 ◽  
Vol 9 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Raj Kumar ◽  
Neha Pazare

An ultra-wideband (UWB) slot antenna for diversity applications is introduced. The overall structure of the antenna consists of two similar coplanar waveguide (CPW)-fed stepped rectangular slots placed in an orthogonal position. The slots are asymmetric with respect to their placement in the ground plane. The CPW feeds are double stepped and terminated on hexagonal patches for better impedance matching. A wide impedance bandwidth (measured) from 3 to 12 GHz with an isolation better than 15 dB is obtained with this antenna. To improve the isolation, the design is modified and an I-shaped slot strip is introduced between the two slot antennas. With this, the isolation is brought about 25 dB of most of the band, while the impedance bandwidth remains the same (2.8–12 GHz for port 1, measured and 2.9–12 GHz for port 2, measured). The far-field radiation patterns are also measured and a peak gain of about 5 dBi is obtained. Finally, the diversity parameters such as envelope correlation coefficient and capacity loss are calculated and found to have low values. The antenna is expected to be useful for UWB diversity applications with good isolation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Wang ◽  
Yan Zhang

A new compact ultra-wideband (UWB) antenna with triband-notched characteristics is presented. The structure of the proposed antenna is simple and symmetric. A modified ground is introduced to obtain a wide impedance bandwidth of 2.9–13.4 GHz withS11<-10 dB. By inserting two arc-shaped slots in the radiation patch, two sharp bands of 3.3–3.7 GHz and 5.15–5.35 GHz are notched. The notch band of 7.25–7.75 GHz is achieved by etching a U-shaped slot in the ground plane. The notched bands can be controlled, respectively, while the characteristics of the proposed UWB antenna almost keep completely unchanged at the unnotched frequencies. Equivalent circuit models, surface current distributions, and input impedance are applied to analyze the principle of the proposed UWB antenna. Parametric studies are given. Simulated and measured results show that the proposed antenna has good impedance matching, stable radiation patterns, and constant gain.


2014 ◽  
Vol 7 (5) ◽  
pp. 571-577
Author(s):  
Raghupatruni Venkat Siva Ram Krishna ◽  
Raj Kumar ◽  
Nagendra Kushwaha

A compact slot antenna for high-gain ultra wideband applications is presented. The slot is asymmetrically cut in the ground plane and is a combination of two rectangles. A hexagonal patch with two stepped coplanar waveguide-feed is used to excite the slot. The capacitive reactance of the hexagonal patch is neutralized by the inductive reactance created by the asymmetric slot and results into wider impedance matching. The measured impedance bandwidth of the proposed antenna is 11.85 GHz (2.9–14.75 GHz). The radiation patterns of the proposed antenna are found to be omni-directional in the H-plane and bi-directional in the E-plane. To enhance the gain of the antenna, a compact three-layer frequency selective surface (FSS) is used as a reflector. The overall thickness of the FSS is 3.5 mm. There is 4–5 dBi improvement in antenna gain after application of the FSS. The measured and simulated results are in good agreement.


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


Sign in / Sign up

Export Citation Format

Share Document