Circular polarization realization in array antennas by a modified sequential phase feeding mechanism of linearly polarized elements

2019 ◽  
Vol 11 (7) ◽  
pp. 729-738
Author(s):  
A. Haghshenas ◽  
CH. Ghobadi ◽  
J. Nourinia ◽  
M. Majidzadeh ◽  
S. Mohammadi-Asl

AbstractNovel designs of a circularly polarized 2 × 2 and 4 × 4 slot array antennas (CPSAAs) are proposed. Sequential phase feed network composed of a section of 270° and four strips is utilized to feed the array structures. Array elements are simple linearly polarized wide slot antennas (WSAs) composed of simple radiating patches with truncation on four corners and slotted ground plane on substrate backside. Each WSA operates over the UWB frequency band of 3.1–10.6 GHz. When the WSAs are arranged in the form of 2 × 2 and 4 × 4 CPSAAs, frequency bands of 3–13.1 and 1.4–12.3 GHz are covered, respectively. More importantly, CP is generated at 4.5–8 and 4.6–8.8 GHz for 2 × 2 and 4 × 4 CPSAAs, respectively. This is while; the WSAs are linearly polarized elements. Higher gain values and wider bandwidths are obtained with respect to single WSA. Design process and performance analysis of the single and array antennas are discussed through the paper.

2018 ◽  
Vol 10 (3) ◽  
pp. 328-335
Author(s):  
Saeed Mohammadi-Asl ◽  
Javad Nourinia ◽  
Changiz Ghobadi ◽  
Maryam Majidzadeh

Compact broadband circularly polarized elliptical slot antenna arrays (CPESAAs) are devised based on 2 × 2 and 4 × 4 circularly polarized (CP) elliptical slot antennas and a sequential phase feed network. To realize the circular polarization, eight rectangular stubs are embedded in the feed structure to excite two orthogonal E vectors in 2 × 2 CPESAA configuration. Moreover, by taking four rectangular slots out from each array element, return loss and axial-ratio bandwidths are noticeably increased. The investigated simple array element has a compact size of 20 × 20 × 1 mm3. As well, 2 × 2 CPESAA occupies a compact size of 55 × 60 × 1 mm3, which operates within the frequency band 4.18–9.35 GHz. Thus, 76.4% of S11< −10 dB and 51.4% of CP bandwidth (4.43–7.5 GHz) are covered. Moreover, proposed 4 × 4 CPESAA is printed on 110 × 110 × 1 mm3FR4 substrate and covers the frequency band of 1.15–12.98 GHz with CP at 2.95–8.82 GHz. Throughout the study, the design process of the proposed antenna arrays are presented and discussed in detail.


2019 ◽  
Vol 11 (10) ◽  
pp. 1054-1060
Author(s):  
Kapil Saraswat ◽  
A. R. Harish

AbstractA polarization and band reconfigurable cross-slot antenna for multiband applications is presented in this paper. The antenna consists of four p–i–n diodes embedded in the cross-shaped slot in a ground plane and excited by a microstrip feed line. The p–i–n diodes are placed in such a way that they produce multiple bands, with linearly and circularly polarized (CP) radiation. By switching the states of the p–i–n diodes, the sense of rotation of the electric field in CP radiation can be reconfigured. The proposed structure can be configured to produce two bands that radiate linearly polarized waves or three bands, where, two are linearly polarized and one is CP. The proposed design concepts are validated bythe CST studio suite as well as measurementsare carried out on fabricated prototypes.


2015 ◽  
Vol 8 (6) ◽  
pp. 921-929 ◽  
Author(s):  
Muhammad Asad Rahman ◽  
Quazi Delwar Hossain ◽  
Md. Azad Hossain ◽  
Eisuke Nishiyama ◽  
Ichihiko Toyoda

A new circularly polarized planar array antenna using linearly polarized microstrip patches is designed and optimized for X-band wireless communication applications. Four square patch elements with feed network are used to design the circularly polarized array antenna. The feed network consists of microstrip lines on the obverse side of the dielectric substrate and slot line on the reverse side of the substrate. Both-sided MIC technology is successfully employed to apply its inherent advantages in the design process of the array structure. The unequal feed line is used to create 90° phase difference between the linearly polarized patches. Therefore, the circular polarization is realized by the combination of linearly polarized patches and unequal feed line. Characteristics of the proposed array are investigated by using two electromagnetic (EM) simulators: advanced design system and EMPro. The −10 dB impedance bandwidth of the antenna is around 5%. The 3 dB axial ratio bandwidth of 1.48% is obtained. The design of the proposed antenna along with parametric study is presented and discussed.


2016 ◽  
Vol 9 (3) ◽  
pp. 705-710 ◽  
Author(s):  
Majid- Fakheri ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali- Sadeghzadeh

This paper presents a new broad band circularly polarized slot antenna array based on substrate-integrated waveguide (SIW) and aperture feeding techniques. The antenna element's impedance and 3 dB axial-ratio (AR) bandwidths are from 8.8 to 10.4 GHz (16.67%) and 9.5–10.7 GHz (12%), respectively. Employing aperture-coupled feed and combining this method with sequentially rotated network, a 2 × 2 antenna array is achieved. Parametric optimization procedure is used to enhance the antenna specifications. In the presented scheme by reducing mutual coupling caused by the SIW technique and sequentially rotated feed network, all parameters of antenna are improved. Consequently a novel antenna array with impedance bandwidth of 2.8 GHz (8.7–11.5 GHz) and 3 dB AR bandwidth of 2.1 GHz (9–11.05 GHz) are obtained. The average gain of the proposed antenna is about 16.7 dBic. A new method is used to increase the gain of antenna array. The extracted result shows that side lob level, mutual coupling, impedance bandwidth, and performance of antenna simultaneously are controlled.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chenhui Xia ◽  
Shuo Diao ◽  
Wenting Yin ◽  
Zhifang Huang ◽  
Lei Wang ◽  
...  

A compact wideband circularly polarized (CP) microstrip slot antenna (MSA) with parasitic elements is designed in this letter. The CP MSA comprises a square-loop sequential-phase (SP) feeding configuration, four rotated rectangular patches, and four L-shaped slots embedded in the ground plane. The square-loop SP feeding structure comprises a square loop and an arc-shaped strip, which could provide a 270° phase difference. Four rotated rectangular patches are placed at the edge of the square-loop feeding configuration using a capacitively tightly coupled feeding method to stimulate the CP resonant mode. After selecting these elements and tuning proper dimensions, the broad operating bandwidths of 4.38–5.25 GHz (18%) for |S11| <–10 dB and 4.65–5.31 GHz (13.2%) for AR <3 dB could be realized. Hence, the designed CP MSA has a potential application value in wireless communication.


2017 ◽  
Vol 16 ◽  
pp. 3176-3179 ◽  
Author(s):  
Saeid Mohammadi-Asl ◽  
Javad Nourinia ◽  
Changiz Ghobadi ◽  
Maryam Majidzadeh

Author(s):  
Qiang Chen ◽  
Guolin Zhang ◽  
Changhui He ◽  
Ya Fan ◽  
Zhenbo Zhu ◽  
...  

Abstract This research involves a compact wideband circularly-polarized antenna array, which consists of a sequential rotating phase feed network, 2 × 2 mushroom-type metamaterial (MTM) unit, and so on. Each antenna array unit contains a microstrip feedline, an L-shaped slot antenna, and so on. The MTM-based antennas were incorporated with a sequential-phase network of sequentially rotated series-parallel feed to achieve wideband operation. The operational bandwidth and the radiation model in the high-frequency area were improved through the adjustment of spacing between the L-shaped slots while maintaining the size and structure of the MTM. The proposed design had dimensions of 80 mm × 80 mm × 3.5 mm (~1.64 λ0 × 1.64 λ0 × 0.072 λ0 at 6.15 GHz), and it was simulated, fabricated, and tested.


Author(s):  
Zhi‐Hao Mu ◽  
Chang‐Xing Chen ◽  
Jing‐Nan Ma ◽  
Ying‐Juan Zhao ◽  
Qiang Chen

Sign in / Sign up

Export Citation Format

Share Document