Broadband circularly polarized slot antenna arrays using linked elliptical slots forC- andX-band applications

2018 ◽  
Vol 10 (3) ◽  
pp. 328-335
Author(s):  
Saeed Mohammadi-Asl ◽  
Javad Nourinia ◽  
Changiz Ghobadi ◽  
Maryam Majidzadeh

Compact broadband circularly polarized elliptical slot antenna arrays (CPESAAs) are devised based on 2 × 2 and 4 × 4 circularly polarized (CP) elliptical slot antennas and a sequential phase feed network. To realize the circular polarization, eight rectangular stubs are embedded in the feed structure to excite two orthogonal E vectors in 2 × 2 CPESAA configuration. Moreover, by taking four rectangular slots out from each array element, return loss and axial-ratio bandwidths are noticeably increased. The investigated simple array element has a compact size of 20 × 20 × 1 mm3. As well, 2 × 2 CPESAA occupies a compact size of 55 × 60 × 1 mm3, which operates within the frequency band 4.18–9.35 GHz. Thus, 76.4% of S11< −10 dB and 51.4% of CP bandwidth (4.43–7.5 GHz) are covered. Moreover, proposed 4 × 4 CPESAA is printed on 110 × 110 × 1 mm3FR4 substrate and covers the frequency band of 1.15–12.98 GHz with CP at 2.95–8.82 GHz. Throughout the study, the design process of the proposed antenna arrays are presented and discussed in detail.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jia-Hong Lin ◽  
Wen-Hui Shen ◽  
Zhi-Dong Shi ◽  
Shun-Shi Zhong

In the design of circularly polarized (CP) dielectric resonator antenna (DRA) arrays, the regular-shaped DRAs with simple feeding configurations are mostly used as array elements to make the design procedure more efficient. However, such array element DRA usually achieves only about 6% axial ratio (AR) bandwidth. In this paper, a CP DRA element coupled by a fractal cross-slot which can radiate efficiently and excite the rectangular DRA simultaneously is considered. By adjusting the dimensions of the fractal cross-slot properly, the resonances of the fractal cross-slot and the dielectric resonator can be merged to obtain a wider AR bandwidth. Based on the proposed fractal cross-slot-coupled CP DRA element, two different CP DRA arrays are designed: a wideband CP DRA array and a low-sidelobe-level (SLL) CP DRA array. The designed DRA arrays are fabricated and measured, and structures and performances of the arrays are presented and discussed.


2020 ◽  
Vol 12 (10) ◽  
pp. 1020-1028
Author(s):  
Chawanat Lerkbangplad ◽  
Alongkorn Namahoot ◽  
Prayoot Akkaraekthalin ◽  
Suramate Chalermwisutkul

AbstractIn this paper, a compact circularly polarized quadrifilar antenna with planar inverted-F antenna (PIFA) elements is presented. The proposed antenna consists of four PIFA elements and a Wilkinson divider-based feed network fabricated on FR-4 substrate (ɛr = 4.4, loss tangent = 0.02, thickness = 1.6 mm). The total size of the antenna is 120 × 120 × 13.2 mm3. Impedance matching with a reflection coefficient <−15 dB and an axial ratio (AR) <3 dB are achieved over the global ultra-high frequency (UHF) radio frequency identification (RFID) frequency band and beyond. The realized gain ranges from 2.25 to 3.75 dBic within the frequency band of interest from 860 to 960 MHz with a directional radiation pattern. The proposed antenna is compact, low-cost and extremely wideband in terms of matching and AR compared to state-of-the-art UHF RFID reader antennas.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Tuan-Yung Han

This study proposes a novel 2 × 2 array antenna design with broadband and circularly-polarized (CP) operation. The proposed design uses a simple series-fed network to increase the CP bandwidth without requiring one-by-one adjustment of each array element or a complex feed network. Selecting the appropriate spacing between each array element allows the proposed array antenna to generate CP radiation with a low axial ratio. Experimental results based on a prototype show that this 2 × 2 microstrip array antenna achieves a wide 3 dB axial ratio bandwidth of more than 10%. Simulated data are also provided to confirm the measured results.


2019 ◽  
Vol 11 (7) ◽  
pp. 729-738
Author(s):  
A. Haghshenas ◽  
CH. Ghobadi ◽  
J. Nourinia ◽  
M. Majidzadeh ◽  
S. Mohammadi-Asl

AbstractNovel designs of a circularly polarized 2 × 2 and 4 × 4 slot array antennas (CPSAAs) are proposed. Sequential phase feed network composed of a section of 270° and four strips is utilized to feed the array structures. Array elements are simple linearly polarized wide slot antennas (WSAs) composed of simple radiating patches with truncation on four corners and slotted ground plane on substrate backside. Each WSA operates over the UWB frequency band of 3.1–10.6 GHz. When the WSAs are arranged in the form of 2 × 2 and 4 × 4 CPSAAs, frequency bands of 3–13.1 and 1.4–12.3 GHz are covered, respectively. More importantly, CP is generated at 4.5–8 and 4.6–8.8 GHz for 2 × 2 and 4 × 4 CPSAAs, respectively. This is while; the WSAs are linearly polarized elements. Higher gain values and wider bandwidths are obtained with respect to single WSA. Design process and performance analysis of the single and array antennas are discussed through the paper.


2016 ◽  
Vol 9 (3) ◽  
pp. 705-710 ◽  
Author(s):  
Majid- Fakheri ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali- Sadeghzadeh

This paper presents a new broad band circularly polarized slot antenna array based on substrate-integrated waveguide (SIW) and aperture feeding techniques. The antenna element's impedance and 3 dB axial-ratio (AR) bandwidths are from 8.8 to 10.4 GHz (16.67%) and 9.5–10.7 GHz (12%), respectively. Employing aperture-coupled feed and combining this method with sequentially rotated network, a 2 × 2 antenna array is achieved. Parametric optimization procedure is used to enhance the antenna specifications. In the presented scheme by reducing mutual coupling caused by the SIW technique and sequentially rotated feed network, all parameters of antenna are improved. Consequently a novel antenna array with impedance bandwidth of 2.8 GHz (8.7–11.5 GHz) and 3 dB AR bandwidth of 2.1 GHz (9–11.05 GHz) are obtained. The average gain of the proposed antenna is about 16.7 dBic. A new method is used to increase the gain of antenna array. The extracted result shows that side lob level, mutual coupling, impedance bandwidth, and performance of antenna simultaneously are controlled.


Aerospace ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 39 ◽  
Author(s):  
Peberlin Parulian Sitompul ◽  
Josaphat Tetuko Sri Sumantyo ◽  
Farohaji Kurniawan ◽  
Mohammad Nasucha

Radio beacons enable measurements of ionospheric radio scintillations and total electron content (TEC). These beacons transmit unmodulated, phase-coherent waves in S-band frequencies. Many satellite applications require circularly polarized (CP) wideband antennas. Their compact size, lightweight, and simple fabrication method make CP antennas suitable for small satellite systems. The slot antenna has wideband impedance, but the 3 dB axial ratio bandwidth (ARBW) is narrower compared to the impedance bandwidth (IBW). In this paper, a circularly polarized circular-slotted antenna (CSA) is proposed to enhance the ARBW and the antenna gain. A pair of asymmetrical rectangular slots, a simple 50 Ω feedline and a parasitic patch were introduced to a CSA to enhance the 3 dB ARBW and the antenna gain. Rectangular slots were inserted on the diagonal axis of the CSA, the feedline was shifted to the left side of the x-axis, and a parasitic patch was attached to the circular slot. The lengths of the rectangular slots correspond to the resonant frequency, and the parasitic patch width corresponds to the higher frequency of the 3 dB ARBW. The asymmetrical rectangular slots, the shifted feedline, and the parasitic patch successfully improved the measured 3 dB ARBW of the antenna by 787.5 MHz or 35.79%. The measured gain of a CSA with left-hand circular polarization (LHCP) was also improved by shifting the feedline and the rectangular slot, achieving a peak gain of 5 dBic.


Author(s):  
Qiang Chen ◽  
Guolin Zhang ◽  
Changhui He ◽  
Ya Fan ◽  
Zhenbo Zhu ◽  
...  

Abstract This research involves a compact wideband circularly-polarized antenna array, which consists of a sequential rotating phase feed network, 2 × 2 mushroom-type metamaterial (MTM) unit, and so on. Each antenna array unit contains a microstrip feedline, an L-shaped slot antenna, and so on. The MTM-based antennas were incorporated with a sequential-phase network of sequentially rotated series-parallel feed to achieve wideband operation. The operational bandwidth and the radiation model in the high-frequency area were improved through the adjustment of spacing between the L-shaped slots while maintaining the size and structure of the MTM. The proposed design had dimensions of 80 mm × 80 mm × 3.5 mm (~1.64 λ0 × 1.64 λ0 × 0.072 λ0 at 6.15 GHz), and it was simulated, fabricated, and tested.


2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
Min Guo ◽  
Ji-Jun Yan ◽  
Shun-Shi Zhong ◽  
Zhu Sun

A new dielectric rod antenna (DRA) is introduced to produce circular polarization (CP) over a wide frequency band without a complex feed network. Along with the simulated results, measured results of the antenna prototype are presented, showing a 3 dB axial ratio (AR) CP bandwidth of 17.7%. The radiation characteristics of the fabricated antenna are also demonstrated showing the measured gain of better than 6.2 dBi. Moreover, the measured impedance bandwidth (VSWR≤2) reaches 20.1%, from 8.75 GHz to 10.7 GHz, while the CP beamwidth (AR≤3 dB) at the central frequency is measured over 120°.


2020 ◽  
Vol 12 (5) ◽  
pp. 431-436
Author(s):  
Kapil Saraswat ◽  
Trivesh Kumar ◽  
A. R. Harish

AbstractIn this paper, a wideband circularly polarized corrugated G-shaped grounded ring slot antenna is presented. The proposed antenna structure is excited using a coplanar waveguide-fed monopole antenna, which is placed inside a corrugated G-shaped grounded ring. Due to the asymmetry in the ground plane, two orthogonal modes, having equal magnitude and out of phase by 90° are excited, resulting in circular polarization (CP). The generation of the CP in the proposed antenna structure is explained using thin dipole current element approximation. A prototype of the proposed antenna is fabricated and tested. The measured results exhibit a 3 dB axial ratio bandwidth of 37.6% (2.22–3.25 GHz), and reflection coefficient bandwidth (|S11| ≤ −10 dB) of 47.91% (2.13–3.47 GHz). Additionally, the design guidelines are also presented for G-shaped grounded ring slot antennas.


2018 ◽  
Vol 11 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Shilpee Patil ◽  
A. K. Singh ◽  
Binod K. Kanaujia ◽  
R. L. Yadava

AbstractA simple design for triple-band circularly polarized (CP) wide slot antennas is proposed and experimentally investigated. The proposed antenna having a microstrip-fed rectangular patch with T-shaped notch for triple-band operation and a modified wide square slot on ground plane for CP operation. The measured 10 dB reflection bandwidths are 1.24% (≈340 MHz from 2.56 to 2.9 GHz), 9.63% (≈430 MHz from 4.25 to 4.68 GHz), and 5.34% (≈490 MHz from 8.93 to 9.42 GHz). The generated 3 dB axial ratio bandwidths of the proposed antenna are 7.54, 8.98, and 1.65% at operating frequencies around 2.65, 4.45, and 9.09 GHz, respectively. The measured peak gains within the 3 dB axial ratio bands are 3.03, 3.5, and 5.64 dBi. The simulated and measured results for the return loss, axial ratio, and antenna gain show a good agreement, which validate the antenna design.


Sign in / Sign up

Export Citation Format

Share Document