Compact wideband folded strip monopole antenna for brain stroke detection

Author(s):  
Payal Bhardwaj ◽  
Ritesh Kumar Badhai

Abstract This paper introduces the CPW fed monopole antenna operating at multiple frequencies covering Ultra High Frequency (UHF) bands, suitable for biomedical applications. The planar antenna structure comprises an open loop and a dual folded monopole of optimized length. The antenna exhibits ultra-wideband frequency of operation ranges from 740 MHz to 4.02 GHz covering the frequency bands suitable for head imaging and heart failure detection. The proposed antenna has a compact size of 0.098λ × 0.079λ × 0.019λ where λ indicates wavelength corresponding to the lowest operating frequency. The antenna is further simulated on the human head model to corroborate applications for brain stroke detection. The specific absorption rate (SAR) value of the proposed antenna is compliant with SAR requirements set by IEEE standards. To experimentally verify the parameters of the proposed antenna design, the antenna is tested on the brain tissue model prepared by materials having dielectric properties like human brain tissue. The peak gain of the antenna, when tested on the human phantom, is 6.8 dBi.

2014 ◽  
Vol 6 (6) ◽  
pp. 555-564 ◽  
Author(s):  
Ramazan Köprü ◽  
Sedat Kilinç ◽  
Çağatay Aydin ◽  
Doğu Çağdaş Atilla ◽  
Cahit Karakuş ◽  
...  

In this paper, design, manufacture, and measurement of a wideband matching network for a broadband V-shaped square planar monopole antenna (V-SPMA) is presented. Matching network design is unavoidable in most cases even vital to facilitate a maximally flat power transfer gain for an antenna. In the work, a bandpass matching network (BPMN) design is done for a particular square monopole antenna with V-shaped coupling element that has essentially bandwidth increasing effect. Designed BPMN and the antenna forms a VSPMA–BPMN matched antenna structure. “real frequency technique” is employed in the BPMN design. BPMN prototype circuit has been constructed on an FR4 laminate with commercial microwave chip inductors and capacitors. Vector network analyzer gain and reflectance measurements of the matched antenna structure have shown highly compatible results to those of the theoretical design simulations along the passband (~0.8–4.7 GHz). Furthermore, newly proposed distributed capacitor–resistor lossy model for microstrip lines used in the BPMN circuit have exhibited that it can successfully mimic the measured gain and reflectance performance of the matched structure in passband and even in stopband upto 8 GHz. Designed structure can be utilized as a one single wideband broadcasting medium suitable for many communication standards such as GSM, 3G, and Wi-Fi.


2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


2020 ◽  
Vol 99 ◽  
pp. 99-110 ◽  
Author(s):  
Md. Ashikur Rahman ◽  
Md. Foisal Hossain ◽  
Manjurul Ahsan Riheen ◽  
Praveen Kumar Sekhar

Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Sarthak Singhal ◽  
Amit Kumar Singh

AbstractA CPW-fed 8-shaped monopole antenna for ultra wideband applications is presented. It consists of a 8-shaped monopole and two quarter elliptical coplanar waveguide ground planes. An impedance bandwidth from 5.4 GHz to 23.83 GHz is achieved. The radiation patterns are observed to be omnidirectional and bidirectional in E-and H-plane respectively at lower resonances. At higher frequencies, the radiation patterns are found to be nearly omnidirectional in both planes. The group delay variation is also observed to be constant in the operating frequency range. A good agreement is found between the simulation and experimental results. The designed antenna structure has miniaturized dimensions and wider bandwidth as compared to other already reported monopole structures.


2018 ◽  
Vol 5 (7) ◽  
pp. 180319
Author(s):  
Awais Munawar Qureshi ◽  
Zartasha Mustansar ◽  
Samah Mustafa

In this paper, a detailed analysis of microwave (MW) scattering from a three-dimensional (3D) anthropomorphic human head model is presented. It is the first time that the finite-element method (FEM) has been deployed to study the MW scattering phenomenon of a 3D realistic head model for brain stroke detection. A major contribution of this paper is to add anatomically more realistic details to the human head model compared with the literature available to date. Using the MRI database, a 3D numerical head model was developed and segmented into 21 different types through a novel tissue-mapping scheme and a mixed-model approach. The heterogeneous and frequency-dispersive dielectric properties were assigned to brain tissues using the same mapping technique. To mimic the simulation set-up, an eight-elements antenna array around the head model was designed using dipole antennae. Two types of brain stroke (haemorrhagic and ischaemic) at various locations inside the head model were then analysed for possible detection and classification. The transmitted and backscattered signals were calculated by finding out the solution of the Helmholtz wave equation in the frequency domain using the FEM. FE mesh convergence analysis for electric field values and comparison between different types of iterative solver were also performed to obtain error-free results in minimal computational time. At the end, specific absorption rate analysis was conducted to examine the ionization effects of MW signals to a 3D human head model. Through computer simulations, it is foreseen that MW imaging may efficiently be exploited to locate and differentiate two types of brain stroke by detecting abnormal tissues’ dielectric properties. A significant contrast between electric field values of the normal and stroke-affected brain tissues was observed at the stroke location. This is a step towards generating MW scattering information for the development of an efficient image reconstruction algorithm.


Frequenz ◽  
2013 ◽  
Vol 67 (1-2) ◽  
pp. 1-5
Author(s):  
Li Li ◽  
Zhi-Li Zhou ◽  
Jing-Song Hong

AbstractA novel technique to add an extra Bluetooth band and triple notch bands simultaneously to a compact ultra-wideband (UWB) monopole antenna is presented. This scissors-shaped UWB antenna, covering 2.9 GHz–12.5 GHz, is fed by a special microstrip line. To create an extra Bluetooth band centered at 2.45 GHz, an arc-shaped stub is attached to the high concentrated current area right of the feed line and a rectangular slot is etched in the radiation patch. Besides, a notch band for WLAN (5.6 GHz–6.15 GHz) is also obtained. In addition, by connecting two asymmetric stubs to the feed line, two other notch bands in 3.28 GHz–3.8 GHz for WiMAX and 7.1 GHz–7.76 GHz for downlink of X-band satellite communication systems are achieved. The proposed antenna with compact size of 20 mm × 26 mm is fabricated and measured, showing stable antenna gain and good omni-directional radiation patterns in H-plane.


2022 ◽  
Vol 12 (2) ◽  
pp. 821
Author(s):  
Sarosh Ahmad ◽  
Umer Ijaz ◽  
Salman Naseer ◽  
Adnan Ghaffar ◽  
Muhammad Awais Qasim ◽  
...  

A type of telecommunication technology called an ultra-wideband (UWB) is used to provide a typical solution for short-range wireless communication due to large bandwidth and low power consumption in transmission and reception. Printed monopole antennas are considered as a preferred platform for implementing this technology because of its alluring characteristics such as light weight, low cost, ease of fabrication, integration capability with other systems, etc. Therefore, a compact-sized ultra-wideband (UWB) printed monopole antenna with improved gain and efficiency is presented in this article. Computer simulation technology microwave studio (CSTMWS) software is used to build and analyze the proposed antenna design technique. This broadband printed monopole antenna contains a jug-shaped radiator fed by a coplanar waveguide (CPW) technique. The designed UWB antenna is fabricated on a low-cost FR-4 substrate with relative permittivity of 4.3, loss tangent of 0.025, and a standard height of 1.6 mm, sized at 25 mm × 22 mm × 1.6 mm, suitable for wireless communication system. The designed UWB antenna works with maximum gain (peak gain of 4.1 dB) across the whole UWB spectrum of 3–11 GHz. The results are simulated, measured, and debated in detail. Different parametric studies based on numerical simulations are involved to arrive at the optimal design through monitoring the effects of adding cuts on the performance of the proposed antennas. Therefore, these parametric studies are optimized to achieve maximum antenna bandwidth with relatively best gain. The proposed patch antenna shape is like a jug with a handle that offers greater bandwidth, good gain, higher efficiency, and compact size.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2021 ◽  
Vol 16 ◽  
pp. 194-197
Author(s):  
Guan-Pu Pan ◽  
Jiun-Da Lin ◽  
Tsung-lin Li ◽  
Jwo-Shiun Sun

In this paper, the new dielectric resonator antenna (DRA) is implemented by replacing the traditional dielectric resonator with a new material with low permittivity for ultra-wideband (UWB) application is presented and studied. A hybrid structure DRA was designed with parasitic slot to enhance the impedance bandwidth. The bandwidth met the specification of MB-OFDM for the bandwidth (3.168 GHz - 4.752 GHz). Finally, another antenna structure was designed. By applying the microstrip feed line, UWB and radiation characteristics are achieved. From the measured results, the proposed DRA showed good radiation pattern, high gain, wide bandwidth (3.03 GHz -10.7 GHz) and compact size. The bandwidth met the specification of MB-OFDM (3.168 GHz -10.56 GHz).


Sign in / Sign up

Export Citation Format

Share Document