scholarly journals A fixed axis coiling model for the living planktonic foraminifer Globigerinella siphonifera

1992 ◽  
Vol 6 ◽  
pp. 29-29
Author(s):  
Jelle Bijma ◽  
Brian T. Huber ◽  
Christoph Hemleben

Two morphotypes of Globigerinella siphonifera (Types I and II) can be clearly distinguished in their natural environment based on differences in symbiont distribution, which is dependent on the structure of the pseudopodial network. Laboratory experiments have demonstrated that the life cycle and ecological requirements of Types I and II differ considerably as well. However, qualitative observation of the empty shells reveals no significant differences between these two morphotypes. Therefore, a “fixed-axis” coiling model has been developed to simulate foraminiferal shell morphology with a computer. The model is based on the assumption that isometry is the primary rule implemented in planktonic foraminiferal development. Four parameters (rate of radius increase, number of chambers per whorl, translation rate, and relative distance from the center of any chamber to the coiling axis) and two scaling factors (initial chamber size and number of chambers) suffice to generate geometric models of the shells of these planispirally coiled organisms.Values for the four parameters extracted from digitized SEM microphotographs of dissected specimens of G. siphonifera demonstrate significant differences between the Types I and II. These are primarily due to a different rate of radius increase and a different number of chambers per whorl. Type I has a higher rate, which in combination with its lower number of chambers per whorl results in a more lobate test and a 22% smaller adult shell size than Type II. We suggest that the smaller surface area-to-volume ratio in the Type I population can be explained by increased respiration due to higher oxygen production during symbiotic photosynthesis; TEM has demonstrated that Type II contains twice as many symbionts than Type I and each symbiont contains a higher concentration of chloroplasts.The fixed axis model was also used to describe the ontogeny of G. siphonifera. The model shows that early chambers in log-spirally coiled structures must deviate from a strict isometric arrangement. To maintain exponential growth, the juvenile stage of Types I and II is more planispiral, more umbilicated, and contains more chambers per whorl than the adult stage. Future investigations will focus on the transformation of the shape parameters during later ontogenetic development and during cladogenesis.

Paleobiology ◽  
1997 ◽  
Vol 23 (1) ◽  
pp. 33-62 ◽  
Author(s):  
Brian T. Huber ◽  
Jelle Bijma ◽  
Kate Darling

Two living forms of Globigerinella siphonifera (d'Orbigny), presently identified as Type I and Type II, can easily be distinguished and collected by SCUBA divers because of differences in appearance, arrangement of the rhizopodial network, and the presence or absence of commensals. Additional biological differences are apparent from laboratory culture experiments; Type I individuals survive significantly longer than Type II under conditions of darkness and starvation and have significantly slower chamber formation rates. Stable isotopic analyses of Types I and II also reveal notable differences, with Type I consistently yielding more negative δ18O and δ13C values. Results of Mg/Ca ratio analyses indicate that Type II specimens precipitated their shells in slightly cooler (deeper) surface waters than Type I specimens. These observations and results from DNA sequencing unequivocally demonstrate that G. siphonifera Types I and II should be regarded as biological sister species.Contrarily, biometric analysis of the empty shells reveals few significant differences between G. siphonifera Types I and II. Of all the features measured from X-ray and SEM images of serially dissected specimens, only shell porosity yields readily discernible differences, with Type I adult chambers averaging 10–20% porosity and Type II adult chambers averaging 4–7% porosity. Statistically significant differences between Type I and II populations are revealed in maximum test diameter (Type I is typically larger) and coiling (Type I is typically more evolute), but these differences do not justify species level distinction of Types I and II using traditional paleontological species concepts.On the basis of the above evidence, and since all specimens were collected at the same location at ∼3–8 m water depth, we conclude that G. siphonifera Types I and II are living examples of cryptic speciation, whereby biological speciation has occurred in the absence of discernable change in shell morphology. However, it is not clear when or where this speciation took place. Preliminary study of deep-sea cores from the Caribbean and Pacific sides of the Isthmus of Panama reveals a predominance of specimens with Type II porosity values, with rare occurrence of specimens yielding Type I porosity values. Systematic downcore measurement of shell porosity and tightness of coiling needs to be extended back to the middle Miocene, when G. siphonifera first appeared, to determine the timing of the Type I and II morphological divergence.Postulated mechanisms for reproductive isolation and speciation of Types I and II include alloparapatric, depth parapatric, and sympatric speciation. These models could be tested if further analysis of fossil G. siphonifera shells allows determination of the timing of speciation, the preferred depth distribution, and the history of geographic distribution of Types I and II.


Author(s):  
Jon A. Hotchkiss ◽  
Stephen J. Kennel ◽  
Jack R. Harkema

Pulmonary alveolar are lined by an epithelium comprised of alveolar type I and type II pneumocytes. Alveolar type II cells synthesize and secrete pulmonary surfactant and are progenitor cells for type I cells. Although type I cells represent only 5% to 8% of the total cells in the lung, they cover more than 95% of the alveolar surface. Perhaps as a result of their large surface to volume ratio, type I cells may be damaged by a wide range of inhaled chemicals and gases, including high concentrations of oxygen often used in respiratory therapy.We produced a panel of rat monoclonal antibodies (MoAb) that bind specifically to cells and structural components in normal and fibrotic murine lungs. Light microscopic analysis of immunoperoxidase-stained lung sections from normal Balb/c mice suggested that one MoAb, 411-52, bound specifically to type I pneumocytes. MoAb 411-52 is a rat IgM antibody, as determined by its reactivity with class-specific anti-rat Ig antisera. The morphology of type I cells makes it difficult, if not impossible, to unequivocally identify a type I cell paraffin-embedded tissue sections. Therefore, we used immunoelectron microscopy to determine the cell binding specificity of this MoAb.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-525-C5-528 ◽  
Author(s):  
K. J. MOORE ◽  
P. DAWSON ◽  
C. T. FOXON
Keyword(s):  
Type I ◽  
Type Ii ◽  

2020 ◽  
pp. 37-55 ◽  
Author(s):  
A. E. Shastitko ◽  
O. A. Markova

Digital transformation has led to changes in business models of traditional players in the existing markets. What is more, new entrants and new markets appeared, in particular platforms and multisided markets. The emergence and rapid development of platforms are caused primarily by the existence of so called indirect network externalities. Regarding to this, a question arises of whether the existing instruments of competition law enforcement and market analysis are still relevant when analyzing markets with digital platforms? This paper aims at discussing advantages and disadvantages of using various tools to define markets with platforms. In particular, we define the features of the SSNIP test when being applyed to markets with platforms. Furthermore, we analyze adjustment in tests for platform market definition in terms of possible type I and type II errors. All in all, it turns out that to reduce the likelihood of type I and type II errors while applying market definition technique to markets with platforms one should consider the type of platform analyzed: transaction platforms without pass-through and non-transaction matching platforms should be tackled as players in a multisided market, whereas non-transaction platforms should be analyzed as players in several interrelated markets. However, if the platform is allowed to adjust prices, there emerges additional challenge that the regulator and companies may manipulate the results of SSNIP test by applying different models of competition.


2015 ◽  
Vol 24 (4) ◽  
pp. 523-526 ◽  
Author(s):  
Yoshihiro Maruo ◽  
Mahdiyeh Behnam ◽  
Shinichi Ikushiro ◽  
Sayuri Nakahara ◽  
Narges Nouri ◽  
...  

Background: Crigler–Najjar syndrome type I (CN-1) and type II (CN-2) are rare hereditary unconjugated hyperbilirubinemia disorders. However, there have been no reports regarding the co-existence of CN-1 and CN-2 in one family. We experienced a case of an Iranian family that included members with either CN-1 or CN-2. Genetic analysis revealed a mutation in the bilirubin UDP-glucuronosyltransferase (UGT1A1) gene that resulted in residual enzymatic activity.Case report: The female proband developed severe hyperbilirubinemia [total serum bilirubin concentration (TB) = 34.8 mg/dL] with bilirubin encephalopathy (kernicterus) and died after liver transplantation. Her family history included a cousin with kernicterus (TB = 30.0 mg/dL) diagnosed as CN-1. Her great grandfather (TB unknown) and uncle (TB = 23.0 mg/dL) developed jaundice, but without any treatment, they remained healthy as CN-2. Results: The affected cousin was homozygous for a novel frameshift mutation (c.381insGG, p.C127WfsX23). The affected uncle was compound heterozygous for p.C127WfsX23 and p.V225G linked with A(TA)7TAA. p.V225G-UGT1A1 reduced glucuronidation activity to 60% of wild-type. Thus, linkage of A(TA)7TAA and p.V225G might reduce UGT1A1 activity to 18%–36 % of the wild-type. Conclusion: Genetic and in vitro expression analyses are useful for accurate genetic counseling for a family with a history of both CN-1 and CN-2. Abbreviations: CN-1: Crigler–Najjar syndrome type I; CN-2: Crigler–Najjar syndrome type II; GS: Gilbert syndrome; UGT1A1: bilirubin UDP-glucuronosyltransferase; WT: Wild type; TB: total serum bilirubin.


Sign in / Sign up

Export Citation Format

Share Document