Control of thiocarbamate-resistant rigid ryegrass (Lolium rigidum) in wheat in southern Australia

2019 ◽  
Vol 34 (1) ◽  
pp. 19-24
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

AbstractTwo field experiments were conducted during 2018 at Paskeville and Arthurton, South Australia, to identify effective herbicide options for the control of thiocarbamate-resistant rigid ryegrass in wheat. Dose–response experiments confirmed resistance in both field populations (T1 and A18) of rigid ryegrass to triallate, prosulfocarb, trifluralin, and pyroxasulfone. T1 and A18 were 17.9- and 20-fold more resistant to triallate than susceptible SLR4. The level of resistance detected in T1 to prosulfocarb (5.9-fold) and pyroxasulfone (4-fold) was lower compared to A18, which displayed 12.1- and 7.8-fold resistance to both herbicides, respectively. Despite resistance, the mixture of two different preplant-incorporated (PPI) site-of-action herbicides improved rigid ryegrass control and wheat yield compared to a single PPI herbicide only. Prosulfocarb + triallate and prosulfocarb + S-metolachlor + triallate did not reduce rigid ryegrass seed set when compared to prosulfocarb applied alone at the higher rate (2,400 g ai ha–1). Pyroxasulfone + triallate PPI followed by glyphosate (1,880 g ai ha-1) as a weed seed set control treatment reduced rigid ryegrass seed production by 93% and 95% at both sites, respectively. These herbicides also significantly improved grain yield of wheat at Paskeville (22%) and Arthurton (38%) compared to the untreated.

2012 ◽  
Vol 26 (2) ◽  
pp. 284-288 ◽  
Author(s):  
Samuel G. L. Kleemann ◽  
Gurjeet S. Gill

Two field experiments were undertaken at Roseworthy, South Australia from 2006 to 2007 to evaluate the performance of herbicide application strategies for the control of herbicide-resistant rigid ryegrass in faba bean grown in wide rows (WR). The standard farmer practice of applying postsowing PRE (PSPE) simazine followed by POST clethodim to faba bean grown in WR provided consistent and high levels of rigid ryegrass control (≥ 96%) and caused a large reduction (P < 0.05) in spike production (≤ 20 spikes m−2) as compared with nontreated control (560 to 722 spikes m−2). Furthermore, this herbicide combination resulted in greatest yield benefits for WR faba bean (723 to 1,046 kg ha−1). Although PSPE propyzamide used in combination with shielded interrow applications of glyphosate or paraquat provided high levels of rigid ryegrass control (≥ 93%), these treatments were unable to reduce ryegrass spike density within the crop row (20 to 54 spikes m−2) to levels acceptable for continued cropping. Furthermore, a yield reduction (13 to 29%) was observed for faba bean in treatments with shielded application of nonselective herbicides and could be related to spray drift onto lower leaves. These findings highlight that shielded interrow spraying in WR faba bean could play an important role in the management of rigid ryegrass in southern Australia. However, timing of shielded interrow applications on weed control, crop safety, and issues concerning integration with more effective early-season control strategies require attention.


Weed Science ◽  
2014 ◽  
Vol 62 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Patricia Adu-Yeboah ◽  
Jenna M. Malone ◽  
Gurjeet Gill ◽  
Christopher Preston

Populations of rigid ryegrass with resistance to glyphosate have started to become a problem on fence lines of cropping fields of southern Australian farms. Seed of rigid ryegrass plants that survived glyphosate application were collected from two fence line locations in Clare, South Australia. Dose–response experiments confirmed resistance of these fence line populations to glyphosate. Both populations required 9- to 15-fold higher glyphosate dose to achieve 50% mortality in comparison to a standard susceptible population. The mechanism of resistance in these populations was investigated. Sequencing a conserved region of the gene encoding 5-enolpyruvyl-shikimate-3-phosphate synthase identified no differences between the resistant and susceptible populations. Absorption of glyphosate into leaves of the resistant populations was not different from the susceptible population. However, the resistant plants retained significantly more herbicide in the treated leaf blades than did the susceptible plants. Conversely, susceptible plants translocated significantly more herbicide to the leaf sheaths and untreated leaves than the resistant plants. The differences in translocation pattern for glyphosate between the resistant and susceptible populations of rigid ryegrass suggest resistance is associated with altered translocation of glyphosate in the fence line populations.


2016 ◽  
Vol 30 (2) ◽  
pp. 423-430 ◽  
Author(s):  
Rupinder Kaur Saini ◽  
Samuel G. L. Kleemann ◽  
Christopher Preston ◽  
Gurjeet S. Gill

Rigid ryegrass is the most-troublesome, herbicide-resistant weed in cropping systems of southern Australia. Field experiments were undertaken at Roseworthy, South Australia, in 2013 and 2014, to identify effective herbicide options for the control of clethodim-resistant rigid ryegrass in Clearfield canola. PPI trifluralin + triallate followed by (fb) POST imazamox + imazapyr + clethodim + butroxydim had the lowest plant density of rigid ryegrass in 2014 and provided superior control compared with the standard grower practice of PPI trifluralin + triallate fb POST imazamox + imazapyr + clethodim in 1 of 2 yr. Propyzamide either alone or as a split application (PPI fb POST) or in combination with clethodim provided similar rigid ryegrass control to that of the standard grower practice (38 to 553 plants m−2). Rigid ryegrass treated with PPI dimethenamid-P, pethoxamid, pethoxamid + triallate, and PPI trifluralin fb carbetamide POST produced significantly more seeds than the standard grower practice, which would lead to reinfestation of subsequent crops. Canola yield responded positively to effective herbicide treatments, especially in 2014, when rigid ryegrass density was greater. PPI dimethenamid-P and pethoxamid alone or in combination with triallate and propyzamide were ineffective in reducing rigid ryegrass density and seed production to levels acceptable for continuous cropping systems.


Weed Science ◽  
2018 ◽  
Vol 66 (5) ◽  
pp. 581-585 ◽  
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

AbstractA population of rigid ryegrass (Lolium rigidumGaudin) from a field on the Eyre Peninsula, South Australia, was suspected of resistance to thiocarbamate herbicides. Dose–response studies were conducted on this population (EP162) and two susceptible populations (SLR4 and VLR1). The resistant population exhibited cross-resistance to triallate, prosulfocarb, EPTC, and thiobencarb with higher LD50to triallate (14.9-fold), prosulfocarb (9.4-fold), EPTC (9.7-fold), and thiobencarb (13.6-fold) compared with the susceptible populations SLR4 and VLR1. The resistant population also displayed resistance to trifluralin, pyroxasulfone, and propyzamide. The LD50of the resistant population was higher for trifluralin (13.8-fold), pyroxasulfone (8.1-fold), and propyzamide (2.7-fold) compared with the susceptible populations. This study documents the first case of field-evolved resistance to thiocarbamate herbicides inL. rigidum.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Rupinder Kaur Saini ◽  
Jenna Malone ◽  
Christopher Preston ◽  
Gurjeet S. Gill

Rigid ryegrass, an important annual weed species in cropping regions of southern Australia, has evolved resistance to 11 major groups of herbicides. Dose–response studies were conducted to determine response of three clethodim-resistant populations and one clethodim-susceptible population of rigid ryegrass to three different frost treatments (−2 C). Clethodim-resistant and -susceptible plants were exposed to frost in a frost chamber from 4:00 P.M. to 8:00 A.M. for three nights before or after clethodim application and were compared with plants not exposed to frost. A reduction in the level of clethodim efficacy was observed in resistant populations when plants were exposed to frost for three nights before or after clethodim application. In the highly resistant populations, the survival percentage and LD50were higher when plants were exposed to frost before clethodim application compared with frost after clethodim application. However, frost treatment did not influence clethodim efficacy of the susceptible population. Sequencing of the acetyl coenzyme A carboxylase (ACCase) gene of the three resistant populations identified three known mutations at positions 1781, 2041, and 2078. However, most individuals in the highly resistant populations did not contain any known mutation in ACCase, suggesting the resistance mechanism was a nontarget site. The effect of frost on clethodim efficacy in resistant plants may be an outcome of the interaction between frost and the clethodim resistance mechanism(s) present.


2007 ◽  
Vol 58 (2) ◽  
pp. 105 ◽  
Author(s):  
M. Rebbeck ◽  
C. Lynch ◽  
P. T. Hayman ◽  
V. O. Sadras

Delving is a farming practice involving the mixing of a deep clayey subsoil layer with a sandy topsoil. One of the many effects of this practice is to reduce soil albedo and increase water-holding capacity of the topsoil, thus increasing the potential for storage and release of heat and potential attenuation of the effects of radiative frost. At Keith, a frost-prone location of South Australia, we investigated the effect of management practices with putative capacity to reduce frost damage, with emphasis on delving. Three field experiments were established on Brown Sodosols with a water-repellent sand topsoil. In relation to crops in untreated control soil, delving increased wheat yield from 1.9 to 3.1 t/ha in 2003, and from 0.5 to 1.5 t/ha in 2004. This large delving effect contrasted with the minor effects of other treatments including soil rolling, sowing rate, row spacing, and cultivar mixture. Lack of significant interactions between treatments indicated a robust response to delving across a range of management practices. Topsoil and canopy-height minimum temperatures were consistently higher in the delved treatment. The average difference in canopy-height minimum temperature between delved and control treatments was 0.3–0.4°C, with a maximum of 1.6°C in 2003 and 1.2°C in 2004. A single, robust relationship between yield and frost damage fitted the data pooled across treatments and seasons. This, together with the temperature differential between treatments, and significant relationships between minimum canopy-height temperature around flowering and frost damage supported the conclusion that a substantial part of the yield gain attributable to delving was related to reduced frost damage.


Weed Science ◽  
2017 ◽  
Vol 65 (6) ◽  
pp. 690-698 ◽  
Author(s):  
Pablo Tomas Fernandez-Moreno ◽  
Antonia Maria Rojano-Delgado ◽  
Julio Menendez ◽  
Rafael De Prado

Five rigid ryegrass populations suspected of being resistant to both glyphosate and oxyfluorfen were collected in southern Spain and tested under laboratory-controlled conditions. Four populations (Depuradora, Condado, AlamoRasilla, and Portichuelo) were treated with glyphosate for at least 15 consecutive years, and treatments during the last 5 yr were mixed with oxyfluorfen. The fifth population (4alamos) followed the same glyphosate treatment, although oxyfluorfen was never used to control it. Dose–response assays confirmed glyphosate resistance in all populations, with resistance indexes ranging from 11.7 to 37.5 (GR90). Shikimate accumulation assays consistently supported these data, as the most glyphosate-resistant populations (Depuradora and Condado) displayed the lowest shikimate levels. Surprisingly, four populations (Depuradora, Condado, AlamoRasilla, and Portichuelo) displayed 7.93- to 70.18-fold more resistance (GR90) to oxyfluorfen, despite limited selection pressure, showing a similar resistance pattern as that for glyphosate. The 4alamos population displayed oxyfluorfen GR90values that were similar to those observed in susceptible plants; however, this population was significantly more resistant in terms of plant survival (LD90). Protoporphyrin IX accumulation assays supported the results of dose–response assays, in that the most oxyfluorfen-resistant populations accumulated less protoporphyrin IX. Although more studies are needed, it seems that these five glyphosate-resistant weed populations display a natural tendency to easily develop resistance to oxyfluorfen, with the populations that have higher resistance to glyphosate also having higher resistance to oxyfluorfen.


Weed Science ◽  
2018 ◽  
Vol 66 (5) ◽  
pp. 627-633 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Charlotte Aves ◽  
Stephen B. Powles

AbstractHarvest weed seed control (HWSC) is an Australian innovation, developed to target high proportions of weed seed retained at crop maturity by many major weed species. There is the potential, however, that a reduction in the average height of retained seed is an adaptation to the long-term use of HWSC practices. With the aim of examining the distribution of rigid ryegrass (Lolium rigidumGaudin) seed through crop canopies, a survey of Australian wheat (Triticum aestivumL.) fields was conducted at crop maturity. Nine sites with medium to long-term HWSC use were specifically included to examine the influence of HWSC use on seed retention height. During the 2013 wheat harvest,L. rigidumand wheat plant samples were collected at five heights downward through the crop canopy (40, 30, 20, 10, and 0 cm above ground level) in 71 wheat fields. Increased crop competition resulted in higher proportions ofL. rigidumseed in the upper crop canopy (>40 cm). The increase in plant height is likely a shade-intolerance response ofL. rigidumplants attempting to capture more light. This plant attribute creates the opportunity to use crop competition to improve HWSC efficacy by increasing the average height of seed retention. Crop competition can, therefore, have a double impact by reducing overallL. rigidumseed production and increasing seed retention height. Examining the distribution of wheat biomass andL. rigidumseed through the crop canopy, we determined that reducing harvest height for HWSC considerably increased the collection ofL. rigidumseed (25%) but to a lesser extent wheat crop biomass (14%). Comparison of + and − HWSC use at nine locations found no evidence of adaptation to this form of weed control following 5 to 10 yr of use. Although the potential for resistance to HWSC remains, these results indicate that this will not readily occur in the field.


2012 ◽  
Vol 26 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Peter Boutsalis ◽  
Gurjeet S. Gill ◽  
Christopher Preston

Herbicide resistance in rigid ryegrass is an escalating problem in grain-cropping fields of southeastern Australia due to increased reliance on herbicides as the main method for weed control. Weed surveys were conducted between 1998 and 2009 to identify the extent of herbicide-resistant rigid ryegrass across this region to dinitroaniline, and acetolactate synthase- and acetyl coenzyme A (CoA) carboxylase-inhibiting herbicides. Rigid ryegrass was collected from cropped fields chosen at random. Outdoor pot studies were conducted during the normal winter growing season for rigid ryegrass with PRE-applied trifluralin and POST-applied diclofop-methyl, chlorsulfuron, tralkoxydim, pinoxaden, and clethodim. Herbicide resistance to trifluralin in rigid ryegrass was identified in one-third of the fields surveyed from South Australia, whereas less than 5% of fields in Victoria exhibited resistance. In contrast, resistance to chlorsulfuron was detected in at least half of the cropped fields across southeastern Australia. Resistance to the cereal-selective aryloxyphenoxypropionate-inhibiting herbicides diclofop-methyl, tralkoxydim, and pinoxaden ranged between 30 and 60% in most regions, whereas in marginal cropping areas less than 12% of fields exhibited resistance. Resistance to clethodim varied between 0 and 61%. Higher levels of resistance to clethodim were identified in the more intensively cropped, higher-rainfall districts where pulse and canola crops are common. These weed surveys demonstrated that a high incidence of resistance to most tested herbicides was present in rigid ryegrass from cropped fields in southeastern Australia, which presents a major challenge for crop producers.


2011 ◽  
Vol 59 (7) ◽  
pp. 610 ◽  
Author(s):  
Rowena L. Long ◽  
Jason C. Stevens ◽  
Erin M. Griffiths ◽  
Markus Adamek ◽  
Stephen B. Powles ◽  
...  

The smoke-derived chemical karrikinolide commonly triggers seeds in the Brassicaceae, Solanaceae and Asteraceae families to germinate, yet species in the Poaceae – another major understorey and weed family – have responded to the chemical with mixed results. This study aimed to understand why some grass species respond to karrikinolide while others do not. Using a field-based seed-burial trial, dose-response experiment, and stratification experiment, we investigated whether karrikinolide could alleviate dormancy and trigger seeds to germinate for seven global agronomic weeds: Avena fatua L., Lolium rigidum Gaudin, Eragrostis curvula (Schrad.) Nees, Phalaris minor Retz., Hordeum glaucum Steud., Ehrharta calycina Sm. and Bromus diandrus Roth. Seeds of A. fatua were consistently stimulated to germinate with karrikinolide in all experiments, whether seeds were freshly collected or dormancy had been partially alleviated. In contrast, seeds of L. rigidum failed to respond to karrikinolide when the seeds were fresh, after-ripened in the laboratory, and even during natural dormancy loss in the field. Interestingly, although karrikinolide did not stimulate freshly collected E. curvula seeds to germinate, it hastened dormancy loss when applied during stratification. These findings are helpful for understanding the responses of grass species following fire. They also contribute to a growing body of research aimed at using karrikinolide as a tool for triggering uniform germination of seeds for enhancing restoration efforts and depleting the weed seed bank.


Sign in / Sign up

Export Citation Format

Share Document