Horse purslane (Trianthema portulacastrum) control in pigeonpea with PRE and POST herbicides

2020 ◽  
Vol 34 (5) ◽  
pp. 764-769
Author(s):  
Gulshan Mahajan ◽  
R. C. N. Rachaputi ◽  
Bhagirath Singh Chauhan

AbstractPigeonpea has great potential as a profitable summer legume rotational crop in cereal farming systems of subtropical Australia. Pigeonpea requires season-long weed control, but options for controlling broadleaf weeds in pigeonpea with POST herbicides are limited. The objective of this study was to evaluate the performance of different herbicides (PRE: pendimethalin; POST: acifluorfen, bentazon, and imazapic) applied singly or in sequence for horse purslane control in pigeonpea and their impact on pigeonpea yield. Field experiments were conducted in 2017 and 2018 at Gatton, Australia. Pendimethalin applied PRE at 1.14 kg ai ha−1 reduced horse purslane biomass by 87% and 92% and produced 32% and 105% higher grain yield compared with the nontreated control in 2017 and 2018, respectively. Imazapic applied POST at 0.10 kg ai ha−1 reduced horse purslane biomass by 79% and 82% and increased grain yield by 60% and 88% compared with the nontreated control in 2017 and 2018, respectively. Acifluorfen applied POST (0.34 and 0.42 kg ai ha−1) caused 16% to 48% injury to pigeonpea at 45 d after treatment. Control of horse purslane ranged from 87% to 92% (biomass reduction) with pendimethalin applied PRE at 1.14 kg ai ha−1 and was comparable with pendimethalin applied PRE at 0.91 kg ai ha−1 in the sequential application, and imazapic at 0.08 kg ai ha−1 or bentazon at 0.96 kg ai ha−1. The study findings suggest if farmers miss the PRE application of pendimethalin or are unable to achieve season-long weed control, POST application of imazapic is an alternate. This research provided herbicide options for control of horse purslane in pigeonpea that could be used in rotations for reducing the selection pressure of weeds.

2017 ◽  
Vol 11 ◽  
Author(s):  
Euro Pannacci ◽  
Francesco Tei ◽  
Marcello Guiducci

Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006-07; exp. 3, 2007-08) in central Italy (42°57' N - 12°22' E, 165 m a.s.l.) in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: 1) spring tine harrowing used at three different application times (1 passage at T1; 2 passages at the time T1; 1 passage at T1 followed by 1 passage at T1 + 14 days) in the crop sowed at narrow (traditional) row spacing (0.15 m) and 2) split-hoeing and finger-weeder, alone and combined at T1, in the crop sowed at wider row spacing (0.30 m). At the time T1 winter wheat was at tillering and weeds were at the cotyledons-2 true leaves growth stage. The experimental design was a split-plot with four replicates. Six weeks after mechanical treatments, weed ground cover (%) was rated visually using the Braun–Blanquet cover-abundance scale; weeds on three squares (0.6 x 0.5 m each one) per plot were collected, counted, weighed, dried in oven at 105 °C to determine weed density and weed above-ground dry biomass. At harvest, wheat ears density, grain yield, weight of 1000 seeds and hectolitre weight were recorded. Total weed flora was quite different in the three experiments. The main weed species were: <em>Polygonum aviculare</em> L. (exp. 1 and 2), <em>Fallopia convolvulus</em> (L.) Á. Löve (exp. 1 and 3), <em>Stachys annua</em> (L.) L. (exp. 1), <em>Anagallis arvensis</em> L. (exp. 2), <em>Papaver rhoeas</em> L. (exp.3), <em>Veronica hederifolia</em> L. (exp. 3). In the winter wheat sowed at narrow rows, 2 passages with spring-tine harrowing at the same time seems to be the best option in order to reconcile a good efficacy with the feasibility of treatment. In wider rows spacing the best weed control was obtained by splithoeing alone or combined with finger-weeder. The grain yield, on average 10% higher in narrow rows, the lower costs and the good selectivity of spring-tine harrowing treatments seems to suggest the adoption of narrow rows spacing in wheat in organic and low-input farming systems.


2004 ◽  
Vol 52 (2) ◽  
pp. 199-203 ◽  
Author(s):  
G. Singh ◽  
R. S. Jolly

Two field experiments were conducted during the kharif (rainy) season of 1999 and 2000 on a loamy sand soil to study the effect of various pre- and post-emergence herbicides on the weed infestation and grain yield of soybean. The presence of weeds in the weedy control plots resulted in 58.8 and 58.1% reduction in the grain yield in the two years compared to two hand weedings (HW) at 30 and 45 days after sowing (DAS), which gave grain yields of 1326 and 2029 kg ha-1. None of the herbicides was significantly superior to the two hand weedings treatment in influencing the grain yield. However, the pre-emergence application of 0.75 kg ha-1 S-metolachlor, and 0.5 kg ha-1 pendimethalin (pre-emergence) + HW 30 DAS were at par or numerically superior to this treatment. There was a good negative correlation between the weed dry matter at harvest and the grain yield of soybean, which showed that effective weed control is necessary for obtaining higher yields of soybean.


HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 215-220
Author(s):  
Ravneet K. Sandhu ◽  
Laura E. Reuss ◽  
Nathan S. Boyd

Sulfentrazone was recently registered for use in tomato and strawberry in Florida. Field experiments were conducted at the Gulf Coast Research and Education Center in Wimauma, FL, to evaluate PRE sulfentrazone applications when applied on flat soil 30 days before bed formation (PRE-f), on the bed top immediately before laying plastic mulch (PRE-t), applied PRE-t as a tank mix with other PRE herbicides, or PRE-t followed by POST halosulfuron or rimusulfuron (POST). Sulfentrazone did not damage the tomato and strawberry crop and had no effect on strawberry and tomato fruit yield. It was as effective as the industry standards but none of the evaluated herbicide treatments provided adequate weed control. POST halosulfuron in tomato resulted in significantly greater nutsedge control at 11 (14%) and 13 (27%) weeks after initial treatment (WAIT) compared with other treatments in Fall 2019 and Spring 2020, respectively. However, in tomato, tank-mixing sulfentrazone with S-metolachlor or metribuzin did not enhance nutsedge control. Weed control did not improve with increased rates or with the use of PRE-f followed by (fb) PRE-t applications in tomato. PRE-t sulfentrazone fb POST halosulfuron was an efficient nutsedge management option in tomato. Sulfentrazone alone did not effectively control weeds in tomato or strawberry. Increased rates of sulfentrazone with the use of PRE-f fb PRE-t sulfentrazone applications did reduce (34%) total weed density in strawberry.


1993 ◽  
Vol 7 (4) ◽  
pp. 879-883 ◽  
Author(s):  
John R. Teasdale

Weed management treatments with various degrees of herbicide inputs were applied with or without a hairy vetch cover crop to no-tillage corn in four field experiments at Beltsville, MD. A hairy vetch living mulch in the no-treatment control or a dead mulch in the mowed treatment improved weed control during the first 6 wk of the season but weed control deteriorated in these treatments thereafter. Competition from weeds and/or uncontrolled vetch in these treatments without herbicides reduced corn yield in three of four years by an average of 46% compared with a standard PRE herbicide treatment of 0.6 kg ai/ha of paraquat plus 1.1 kg ai/ha of atrazine plus 2.2 kg ai/ha of metolachlor. Reducing atrazine and metolachlor to one-fourth the rate of the standard treatment in the absence of cover crop reduced weed control in three of four years and corn yield in two of four years compared with the standard treatment. Hairy vetch had little influence on weed control or corn yield with any herbicide treatments.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Kelly A. Nelson ◽  
Peter P. Motavalli ◽  
William E. Stevens ◽  
John A. Kendig ◽  
David Dunn ◽  
...  

Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S), 0-0-25-17, 3-18-18-0, and 5-0-20-13) and additive rates (2.2, 8.8, and 17.6 kg K ha−1) on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1in a low-yield year (2005) depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K(P=0.03), S(P=0.03), B(P=0.0001), and Cu(P=0.008)concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.


Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Jesper Rasmussen ◽  
Helle H. Nielsen ◽  
Hanne Gundersen

POST weed harrowing and other cultivation methods to control weeds in early crop growth stages may result in crop damage due to low selectivity between crop and weeds. Crop tolerance to cultivation plays an important role but it has not been clearly defined and analyzed. We introduce a procedure for analyzing crop tolerance on the basis of digital image analysis. Crop tolerance is defined as the ability of the crop to avoid yield loss from cultivation in the absence of weeds, and it has two components: resistance and recovery. Resistance is the ability of the crop to resist soil covering and recovery is the ability to recover from it. Soil covering is the percentage of the crop that has been buried because of cultivation. We analyzed data from six field experiments, four experiments with species of small grains, barley, oat, wheat, and triticale, and two experiments with barley cultivars with different abilities to suppress weeds. The order of species' tolerance to weed harrowing was triticale > wheat > barley > oat and the differences were mainly caused by different abilities to recover from soil covering. At 25% soil covering, grain yield loss in triticale was 0.5%, in wheat 2.5%, in barley 3.7%, and in oat 6.5%. Tolerance, resistance, and recovery, however, were influenced by year, especially for oat and barley. There was no evidence of differences between barley cultivars in terms of tolerance indicating that differences among species are more important than differences among cultivars. Selectivity analysis made it possible to calculate the crop yield loss due to crop damage associated with a certain percentage of weed control. In triticale, 80% weed control was associated with 22% crop soil cover on average, which reduced grain yield 0.4% on average in the absence of weeds. Corresponding values for wheat, barley, and oat were 23, 21, and 20% crop soil cover and 2.3, 3.6, and 5.1% grain yield loss.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 350-359 ◽  
Author(s):  
Gulshan Mahajan ◽  
Vikas Poonia ◽  
Bhagirath S. Chauhan

Field experiments were conducted in Punjab, India, in 2011 and 2012 to study the integrated effect of planting pattern [uniform rows (20-cm spacing) and paired rows (15-, 25-, and 15-cm spacing)], cultivars (PR-115 and IET-21214), and weed control treatments (nontreated control, pendimethalin 750 g ai ha−1, bispyribac-sodium 25 g ai ha−1, and pendimethalin 750 g ha−1 followed by bispyribac-sodium 25 g ha−1) on weed suppression and rice grain yield in dry-seeded rice. In the nontreated control, IET-21214 had higher grain yield than PR-115 in both planting patterns. However, such differences were not observed within the herbicide treatment. IET-21214 in paired rows, even in nontreated control, provided grain yield (4.7 t ha−1) similar to that in uniform rows coupled with the sole application of pendimethalin (4.3 t ha−1) and bispyribac-sodium (5.0 t ha−1). In uniform rows, sequential application of pendimethalin (PRE) and bispyribac-sodium (POST) provided the highest grain yield among all the weed control treatments and this treatment produced grain yield of 5.9 and 6.1 t ha−1 for PR-115 and IET-21214, respectively. Similarly, in paired rows, PR-115 in paired rows treated with sequential application of pendimethalin and bispyribac-sodium had highest grain yield (6.1 t ha−1) among all the weed control treatments. However, IET-21214 with the sole application of bispyribac-sodium produced grain yield similar to the sequential application of pendimethalin and bispyribac-sodium. At 30 days after sowing, PR-115 in paired rows coupled with pendimethalin application accrued weed biomass (10.7 g m−2) similar to the sequential application of pendimethalin and bispyribac-sodium coupled with uniform rows (8.1 g m−2). Similarly, IET-21214 with bispyribac-sodium application provided weed control similar to the sequential application of pendimethalin and bispyribac-sodium. Our study implied that grain yield of some cultivars could be improved by exploring their competitiveness through paired-row planting patterns with less use of herbicides.


2017 ◽  
Vol 62 (4) ◽  
pp. 361-369
Author(s):  
Hassan Kasim ◽  
Ibrahim Musa ◽  
Mustapha Muhamman

Poor agronomic practices coupled with herbicide mismanagement influence crop performance, yield, weed infestation and environmental hazards. Thus, field experiments were carried out to investigate the effect of spacing and reduced levels of butachlor on weed control and yield of NERICA 1 rice (Oryza sativa L. x Oryza glaberrima L). The experiments were conducted in the 2011 rainy season at the Teaching and Research Farm of the Department of Crop Production and Horticulture, Modibbo Adama University of Technology, Yola, and Lake Gerio, Yola in the 2012 dry season. Yola is located between latitude 9o14? N and longitude 12o28? E in the Northern Guinea Savanna ecological zone of Nigeria. Treatments consisted of four spacings (20 cm x 20 cm, etc.) and four butachlor levels (3, 2, 1, and 0 kg ha-1 a.i.). The experiments were laid out in a split-plot design with spacings assigned to the main plot and butachlor levels assigned to the sub-plot and were replicated three times. Data were taken on percentage establishment, number of leaves per plant, general weed cover, panicle length and grain yield per hectare. Data generated were subjected to analysis of variance. Means showing a significant F-test were separated using LSD. Results obtained showed that butachlor at 1 kg ha-1 and 14 cm x 14 cm spacing gave the highest grain yield of 1441 kg ha-1 and maximum weed control. They are, therefore, recommended for adoption by farmers in Yola and similar environments.


Weed Science ◽  
1994 ◽  
Vol 42 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Robert L. De Haan ◽  
Donald L. Wyse ◽  
Nancy J. Ehlke ◽  
Bruce D. Maxwell ◽  
Daniel H. Putnam

Field experiments were conducted to determine the effect of a short-term spring-seeded smother plant on corn development and weed control. Yellow mustard was managed to provide interference durations of 2,4,6, or 8 wk, and maximum height of 10 or 20 cm. Three yellow mustard planting patterns and eight seeding rates were evaluated during 1989 and 1990 at St. Paul and Rosemount, MN. Yellow mustard seeded at 2120 seeds m−2with an interference duration of 4 wk and a maximum height of 10 cm decreased corn yield 17% and reduced weed dry weight 4 wk after yellow mustard emergence an average of 66%. Yellow mustard with a 2-wk interference duration did not reduce weed dry weight. Yellow mustard seeded at 2120 seeds m−2with a 6- or 8-wk life cycle and 10-cm height reduced weed dry weight at the end of the interference period an average of 82% but delayed corn silk emergence an average of 5.3 d and reduced average grain yield 19%. Increasing yellow mustard height from 10 to 20 cm delayed corn silk emergence and reduced grain yield but did not decrease weed dry weight. Yellow mustard with an interference duration of 4 wk and a maximum height of 10 cm, seeded over the corn row at 530 seeds m−2, reduced weed dry weight 4 wk after mustard emergence an average of 51%, and resulted in an average corn grain yield reduction of 4%, compared with corn grown in monoculture averaged over weedy and weed-free treatments. These results suggest that it may be possible to develop spring-seeded smother plants that reduce weed biomass up to 80% but have only a small impact on corn yield.


1993 ◽  
Vol 7 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Gregg A. Johnson ◽  
Michael S. Defelice ◽  
Zane R. Helsel

Field experiments were conducted in central Missouri in 1989 and 1990 to evaluate weed control practices in conjunction with cover crops and cover management systems in reduced tillage corn. There was no difference in weed control among soybean stubble, hairy vetch, and rye soil cover when averaged over cover management systems and herbicide treatments. However, mowed hairy vetch and rye covers provided greater weed control in the no-till plots than soybean stubble when no herbicide was used. Differences in weed control among cover management systems were reduced or eliminated when a PRE herbicide was applied. corn population and height were reduced by hairy vetch and rye soil cover. Corn grain yield was reduced in rye plots both years. There was no difference in grain yield between tilled and no-till plots.


Sign in / Sign up

Export Citation Format

Share Document