Response of Barnyardgrass (Echinochloa crus-galli), Green Foxtail (Setaria virdis), Longspine Sandbur (Cenchrus longispinus), and Large Crabgrass (Digitaria sanguinalis) to Nicosulfuron and Rimsulfuron

Weed Science ◽  
2010 ◽  
Vol 58 (3) ◽  
pp. 189-194 ◽  
Author(s):  
D. Shane Hennigh ◽  
Kassim Al-Khatib

Experiments were conducted to determine the efficacy, absorption, and translocation of nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron on barnyardgrass, green foxtail, longspine sandbur, and large crabgrass. In the greenhouse, nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron were applied at 0.0625, 0.125, 0.25, 0.5, 0.75, 1, and 2 times their label rates of 35, 13, and 26 + 13 g ai ha−1, respectively, on 5- to 10-cm plants. Three weeks after treatment (WAT), barnyardgrass was the most susceptible species to all three herbicides, and large crabgrass was the least susceptible. The nicosulfuron, rimsulfuron, or nicosulfuron + rimsulfuron rates causing 50% visible injury (GR50) for barnyardgrass were 10.9, 4.8, and 6 + 3 g ai ha−1, respectively. Similarly, the GR50for large crabgrass were 25.6, 9.9, and 14.3 + 7.2 g ai ha−1, respectively, 3 WAT. Absorption of nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron was greater in barnyardgrass than in large crabgrass. Absorption of nicosulfuron + rimsulfuron in barnyardgrass and large crabgrass was 74% and 57%, respectively, 7 d after treatment (DAT). In addition, translocation of nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron out of the treated leaf was 14, 12, and 14% higher, respectively, in barnyardgrass than in large crabgrass. The differential response of these weed species to nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron might be due to differences in herbicide absorption and translocation.

Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Wesley J. Everman ◽  
Cassandra R. Mayhew ◽  
James D. Burton ◽  
Alan C. York ◽  
John W. Wilcut

Greenhouse studies were conducted to evaluate14C-glufosinate absorption, translocation, and metabolism in glufosinate-resistant corn, goosegrass, large crabgrass, and sicklepod. Glufosinate-resistant corn plants were treated at the four-leaf stage, whereas goosegrass, large crabgrass, and sicklepod were treated at 5, 7.5, and 10 cm, respectively. All plants were harvested at 1, 6, 24, 48, and 72 h after treatment (HAT). Absorption was less than 20% at all harvest intervals for glufosinate-resistant corn, whereas absorption in goosegrass and large crabgrass increased from approximately 20% 1 HAT to 50 and 76%, respectively, 72 HAT. Absorption of14C-glufosinate was greater than 90% 24 HAT in sicklepod. Significant levels of translocation were observed in glufosinate-resistant corn, with14C-glufosinate translocated to the region above the treated leaf and the roots up to 41 and 27%, respectively. No significant translocation was detected in any of the weed species at any harvest timing. Metabolites of14C-glufosinate were detected in glufosinate-resistant corn and all weed species. Seventy percent of14C was attributed to glufosinate metabolites 72 HAT in large crabgrass. Less metabolism was observed for sicklepod, goosegrass, and glufosinate-resistant corn, with metabolites composing less than 45% of detectable radioactivity 72 HAT.


2018 ◽  
Vol 36 (4) ◽  
pp. 133-139
Author(s):  
Cody J. Stewart ◽  
S. Christopher Marble ◽  
Brian E. Jackson ◽  
Brian J. Pearson ◽  
P. Christopher Wilson

Abstract Research objectives were to determine the effect of fertilization method (incorporation, subdress, and topdress) on weed growth and the performance of preemergence herbicides applied to soilless substrates. Nursery containers were filled with a pine bark:peat substrate and fertilized at two different rates [4.4 and 9.5 kg.m−3 (8.9 and 19.2 lb.yd−3)] via topdressing, subdressing, or incorporating. Containers were treated with either dimethenamid-P for spotted spurge (Euphorbia maculata L.), flumioxazin for eclipta (Eclipta prostrata L.) or prodiamine for large crabgrass (Digitaria sanguinalis L.). A control was established for each fertilizer rate/placement and weed species that was not treated. Incorporating or subdressing fertilizer resulted in reduced large crabgrass and spotted spurge growth in non-treated containers. Weeds grew larger at the higher fertility rates in both topdress and incorporated treatments but fertilizer rate did not affect growth of spotted spurge or large crabgrass when fertilizers were subdressed. Herbicides generally provided commercially acceptable weed control regardless of fertilizer treatment, but results varied with species. Results suggest that in the absence of herbicides, topdressing may result in greater weed growth compared with subdressing or incorporating fertilizers; however, fertilizer placement will have less impact on herbicide performance if proper herbicides are chosen and applied correctly. Index words: topdress, subdress, incorporate, large crabgrass, eclipta, spotted spurge, preemergence Chemicals used in this study: Flumioxazin (SureGuard®); 2-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propynyl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7-tetrahydro-1H-isoindole1,3(2H)-dione; Dimethenamid-P (Tower) 2-chloro-N-[(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide; Prodiamine (Barricade) 2,4-dinitro-N3, N3-dipropyl-6-(trifluoromethyl)-1,3-benzenediamine (Barricade®) Species used in this study: Large crabgrass (Digitaria sanguinalis L.); Eclipta (Eclipta prostrata L.); Spotted spurge (Euphorbia maculata L.)


2020 ◽  
Vol 34 (6) ◽  
pp. 818-823 ◽  
Author(s):  
John M. Peppers ◽  
Clebson G. Gonçalves ◽  
J. Scott McElroy

AbstractPinoxaden is a POST acetyl coenzyme A carboxylase (ACCase) inhibitor in the phenylpyrazolin chemical family and is labelled for turfgrass use at broadcast rates of 35.5 to 71 g ai ha−1 and spot spray rates of 156 to 310 g ai ha−1. A greenhouse rate-response study was conducted to characterize the efficacy of pinoxaden against common grassy weeds. Weed species examined in this study were yellow foxtail, southern sandbur, annual bluegrass, roughstalk bluegrass, large crabgrass, dallisgrass, bahiagrass, goosegrass, and perennial ryegrass. Nonlinear regressions were modelled to determine visible injury rates (the application rate at which 50% of the weed species were injured and the 90% [I90] rate) and weight reduction rates (the application rate at which there was a 50% reduction in fresh weight and 90% reduction [WR90]) for each weed species. Only annual bluegrass, bahiagrass, and goosegrass had visible injury I90 values greater than the maximum labelled spot spray rate of 310 g ai ha−1. Annual bluegrass, bahiagrass, southern sandbur, and goosegrass all had WR90 values greater than the maximum labelled spot spray rate of 310 g ai ha−1. Results from this study indicate that the evaluated weed species can be ranked, according to visible injury I90 values, from most to least susceptible: perennial ryegrass > yellow foxtail > dallisgrass > large crabgrass > southern sandbur > roughstalk bluegrass > bahiagrass > goosegrass > annual bluegrass.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Nader Soltani ◽  
Lynette R. Brown ◽  
Peter H. Sikkema

Six field experiments were conducted during 2015 to 2017 in Ontario, Canada, to determine the efficacy of pethoxamid applied alone, and in combination with broadleaf herbicides, for the control of annual grass and broadleaved weeds in white navy bean. Visible injury was generally minimal (0 to 8%) with herbicide treatments evaluated. Weed control was variable depending on the weed species evaluated. Pethoxamid,S-metolachlor, halosulfuron, imazethapyr, sulfentrazone, pethoxamid + halosulfuron, pethoxamid + imazethapyr, and pethoxamid + sulfentrazone controlled redroot pigweed 82 to 98%; common ragweed 19 to 93%; common lambsquarters 49 to 84%; and green foxtail 47 to 92% in white bean. Weed biomass and weed density reductions were similar to visible control ratings for herbicides evaluated. Weed interference delayed white bean maturity and reduced yield by 50% in this study. Weed interference in plots sprayed with pethoxamid,S-metolachlor, and sulfentrazone reduced white bean yield 36%. White bean yield was similar to the weed-free with other herbicides evaluated. This study concludes that there is potential for the tank-mix of pethoxamid with halosulfuron, imazethapyr, or sulfentrazone for weed control in white bean production.


1989 ◽  
Vol 3 (1) ◽  
pp. 105-109 ◽  
Author(s):  
Reid J. Smeda ◽  
Alan R. Putnam

Foliar activity of the butyl ester of fluazifop on large crabgrass was determined by varying the concentration of a petroleum-based oil concentrate and the carrier volume. Increasing the concentration of petroleum oil or reducing the carrier volume improved large crabgrass control. Under greenhouse conditions, both visible injury and plant dry weight reflected greater control with adjuvant concentrations increasing from 0.62 to 5.0% v/v. Similarly, reducing carrier volumes from 374 to 47 L/ha increased grass control. No significant interaction between carrier volume and adjuvant concentration suggests the effects of these two variables are independent of one another. For both variables, effects were greater with sublethal rates of fluazifop.


1989 ◽  
Vol 7 (1) ◽  
pp. 35-37
Author(s):  
Ted Whitwell ◽  
Kathie Kalmowitz

Abstract Granular herbicide combinations were evaluated for longevity of prostrate spurge (Euphorbia humistrata Engelm.ex.Gray) and large crabgrass (Digitaria sanguinalis L.) control. Rout (oxytluorfen + oryzalin), Ornamental Herbicide 2 (oxytluorfen + pendimethalin), Ronstar plus Modown (oxadiazon + bifenox) and Ronstar (oxadiazon) were applied at labeled rates and twice labeled rate in container grown Compact Japanese Holly (Ilex crenata ‘Compacta’). Weeds were reseeded each month but herbicides were not reapplied. The normal use rate controlled both weeds during the first 30 days after treatment (DAT) while twice this rate controlled the weed species at 60 DAT. No herbicide treatment effectively (>80%) controlled prostrate spurge 90 DAT. The high rate of Rout controlled (>80%) crabgrass at 90 DAT. Weed numbers and above ground biomass retlected visual control ratings. Compact Japanese Holly was not injured by any treatment.


Weed Science ◽  
1981 ◽  
Vol 29 (5) ◽  
pp. 577-586 ◽  
Author(s):  
Orvin C. Burnside ◽  
Charles R. Fenster ◽  
Larry L. Evetts ◽  
Robert F. Mumm

An experiment was initiated in 1970 and continued through 1979 by exhuming and germinating seed of 12 economic weed species buried beneath 23 cm of soil in eastern and western Nebraska. Loss in germination of exhumed seeds over years is mathematically characterized by the formula for the rectangular hyperbola, which represents many shapes of curves that have zero as their lower limit. Of the 12 weed species, only fall panicum (Panicum dichotomiflorumMichx.) and redroot pigweed (Amaranthus retroflexusL.) seed germination did not drop significantly over the 10-yr burial period. Germination of redroot pigweed seed was higher when buried in eastern Nebraska, but was higher for smooth groundcherry (Physalis subglabrataMack&Bush.) and velvetleaf (Abutilon theophrastiMedic.) when buried in western Nebraska. Germination of the other nine species were not affected by burial location. The 12 weed species can be ranked as those showing most to least rapid loss of germination during burial for 10 yr as follows: honeyvine milkweed [Ampelamus albidus(Nutt.) Britt.], hemp dogbane (Apocynum cannabinumL.), kochia [Kochia scoparia(L.) Schrad.], sunflower (Helianthus annumL.), large crabgrass [Digitaria sanguinalis(L.) Scop.], common milkweed (Asclepias syriacaL.), musk thistle (Carduus nutansL.), velvetleaf, fall panicum, redroot pigweed, green foxtail [Setaria viridis(L.) Beauv.], and smooth groundcherry.


1999 ◽  
Vol 13 (3) ◽  
pp. 504-509 ◽  
Author(s):  
Prasanta C. Bhowmik ◽  
Sanjay Kushwaha ◽  
Sowmya Mitra

Greenhouse and field experiments were conducted to determine the response of corn (Zea mays), barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), large crabgrass (Digitaria sanguinalis), velvetleaf (Abutilon theophrasti), and yellow foxtail (Setaria lutescence) to RPA 201772. Barnyardgrass, large crabgrass, velvetleaf, and common lambsquarters were more susceptible than yellow foxtail to RPA 201772. Velvetleaf was the most susceptible species and rates above 18 g ai/ha of RPA 201772 controlled 100% of the population 4 wk after treatment (WAT). Percent control of all the weed species increased with increased RPA 201772 rates. In the field, the dry weights of yellow foxtail decreased as the rate of RPA 201772 increased from 0 to 210 g/ha. However, a 60% reduction of dry weight of yellow foxtail was recorded at 140 g/ha of RPA 201772 compared to the untreated check 6 WAT, whereas at 12 WAT the dry weight of yellow foxtail was reduced to only 15% because of intraspecific competition. Yellow foxtail was moderately susceptible to RPA 201772. Corn was tolerant to RPA 201772; the GR80 value was 435 g/ha in the greenhouse. The bleaching injury to corn in the field was less than 10%, and it was found only with the 210 g/ha rate of RPA 201772. This injury was temporary and the plants recovered within 2 to 3 wk. Based on the GR80 values, velvetleaf was the most susceptible, followed by common lambsquarters, large crabgrass, barnyardgrass, and yellow foxtail.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Nicholas T. Basinger ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
David L. Jordan ◽  
Wesley J. Everman ◽  
...  

AbstractField studies were conducted in 2016 and 2017 at Clinton, NC, to quantify the effects of season-long interference of large crabgrass [Digitaria sanguinalis (L.) Scop.] and Palmer amaranth (Amaranthus palmeri S. Watson) on ‘AG6536’ soybean [Glycine max (L.) Merr.]. Weed density treatments consisted of 0, 1, 2, 4, and 8 plants m−2 for A. palmeri and 0, 1, 2, 4, and 16 plants m−2 for D. sanguinalis with (interspecific interference) and without (intraspecific interference) soybean to determine the impacts on weed biomass, soybean biomass, and seed yield. Biomass per square meter increased with increasing weed density for both weed species with and without soybean present. Biomass per square meter of D. sanguinalis was 617% and 37% greater when grown without soybean than with soybean, for 1 and 16 plants m−2 respectively. Biomass per square meter of A. palmeri was 272% and 115% greater when grown without soybean than with soybean for 1 and 8 plants m−2, respectively. Biomass per plant for D. sanguinalis and A. palmeri grown without soybean was greatest at the 1 plant m−2 density. Biomass per plant of D. sanguinalis plants across measured densities was 33% to 83% greater when grown without soybean compared with biomass per plant when soybean was present for 1 and 16 plants m−2, respectively. Similarly, biomass per plant for A. palmeri was 56% to 74% greater when grown without soybean for 1 and 8 plants m−2, respectively. Biomass per plant of either weed species was not affected by weed density when grown with soybean due to interspecific competition with soybean. Yield loss for soybean grown with A. palmeri ranged from 14% to 37% for densities of 1 to 8 plants m−2, respectively, with a maximum yield loss estimate of 49%. Similarly, predicted loss for soybean grown with D. sanguinalis was 0 % to 37% for densities of 1 to 16 m−2 with a maximum yield loss estimate of 50%. Soybean biomass was not affected by weed species or density. Results from these studies indicate that A. palmeri is more competitive than D. sanguinalis at lower densities, but that similar yield loss can occur when densities greater than 4 plants m−2 of either weed are present.


2019 ◽  
Vol 29 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Debalina Saha ◽  
S. Christopher Marble ◽  
Brian J. Pearson ◽  
Héctor E. Pérez ◽  
Gregory E. MacDonald ◽  
...  

Mulch is often applied in landscape planting beds for weed control, but little research has focused specifically on mulch and preemergence (PRE) herbicide combinations. The objectives of this research were to determine the efficacy of herbicide + mulch combinations and which factors significantly affected weed control, including herbicide formulation and posttreatment irrigation volumes. Additional objectives were to determine efficacy derived from mulch or herbicides used alone under herbicide + mulch combinations and to identify differences in the additive (herbicide + mulch combinations) or singular (herbicide or mulch) effects compared with the use of herbicides or mulch only. Large crabgrass (Digitaria sanguinalis), garden spurge (Euphorbia hirta), and eclipta (Eclipta prostrata) were used as bioassay species for prodiamine, dimethenamid-P + pendimethalin, and indaziflam efficacy, respectively. The experiment consisted of a factorial treatment arrangement of two herbicide formulations (granular or spray applied), three mulch types [hardwood chips (HWs), pine bark (PB), and pine straw (PS)], two mulch depths (1 and 2 inches), and three levels of one-time, posttreatment irrigation volumes (0.5, 1, and 2 inches). Three sets of controls were used: the first set included three mulch types applied at two depths receiving only 0.5-inch irrigation volume, the second set included only two herbicide formulations and three one-time irrigation volumes, whereas the last set received no treatment (no herbicide or mulch) and only 0.5-inch irrigation volume. High levels of large crabgrass and garden spurge control (88% to 100%) were observed with all herbicide + mulch combinations evaluated at mulch depths of 1 inch or greater. When comparing mulch types, the best eclipta control was achieved with hardwood at 2 inches depth. The spray formulation of indaziflam outperformed the granular formulation in most cases when used alone or in combination with mulch. Overall, the results showed that spray formulations of prodiamine and dimethenamid-P + pendimethalin were more effective than granular formulations when applied alone, whereas indaziflam was more effective as a spray formulation when used both alone and in combination with mulch. Increasing irrigation volume was not a significant factor for any of the herbicide + mulch combinations when evaluating overall weed control.


Sign in / Sign up

Export Citation Format

Share Document