scholarly journals A passive mechanism for decoupling energy storage and return in ankle–foot prostheses: A case study in recycling collision energy

2021 ◽  
Vol 2 ◽  
Author(s):  
Hashim A. Quraishi ◽  
Max K. Shepherd ◽  
Leo McManus ◽  
Jaap Harlaar ◽  
Dick H. Plettenburg ◽  
...  

Abstract Individuals with lower limb amputation experience reduced ankle push-off work in the absence of functional muscles spanning the joint, leading to decreased walking performance. Conventional energy storage and return (ESR) prostheses partially compensate by storing mechanical energy during midstance and returning this energy during the terminal stance phase of gait. These prostheses can provide approximately 30% of the push-off work performed by a healthy ankle–foot during walking. Novel prostheses that return more normative levels of mechanical energy may improve walking performance. In this work, we designed a Decoupled ESR (DESR) prosthesis which stores energy usually dissipated at heel-strike and loading response, and returns this energy during terminal stance, thus increasing the mechanical push-off work done by the prosthesis. This decoupling is achieved by switching between two different cam profiles that produce distinct, nonlinear torque–angle mechanics. The cams automatically interchange at key points in the gait cycle via a custom magnetic switching system. Benchtop characterization demonstrated the successful decoupling of energy storage and return. The DESR mechanism was able to capture energy at heel-strike and loading response, and return it later in the gait cycle, but this recycling was not sufficient to overcome mechanical losses. In addition to its potential for recycling energy, the DESR mechanism also enables unique mechanical customizability, such as dorsiflexion during swing phase for toe clearance, or increasing the rate of energy release at push-off.

2022 ◽  
Vol 1 (2) ◽  
pp. 59-64
Author(s):  
Alfiana Fitri Istiqomah ◽  
Rifky Ismail ◽  
Deni Fajar Fitriyana ◽  
Sulistyo Sulistyo ◽  
Akmal Putra Fardinansyah ◽  
...  

ABSTRACT. Disability issue has increased in recent years due to the high number of accidents and vascular disease. Loss of limb function for people with amputations often results in an abnormal gait. Energy Storage And Return (ESAR) foot prostheses provide an alternative to help improve gait and minimize metabolic energy expenditure during the walking phase of amputees. This study used 3 designs with models from the Catia V5 Software. The finite element method analysis used Ansys Workbench 18.1 software to evaluate the three designs with a loading of 1.2 times the user's body weight with a maximum weight of 70 kg in normal walking activities. The simulated material is carbon fiber prepreg which has tensile strength, Young's modulus, Poisson ratio, and density of 513.72 MPa, 77.71 GPa, 0.14, and 1.37 g/cm3. The decision-making matrix method is used to determine the best foot prosthesis design according to predetermined criteria. The highest value in the decision-making matrix is 76 in Design 3. The chosen design (Design 3) after gait cycle analysis has a maximum von Mises stress value of 76.956 MPa and the safety factor value for each gait cycle heel strike loading model is 1.0762; foot flat 3.2509; toe-off 6.6263.


2016 ◽  
Vol 7 (1) ◽  
pp. 446-450 ◽  
Author(s):  
Pascal G. Yot ◽  
Louis Vanduyfhuys ◽  
Elsa Alvarez ◽  
Julien Rodriguez ◽  
Jean-Paul Itié ◽  
...  

Determination of the mechanical energy storage performance of the aluminum fumarate metal–organic framework A520.


2016 ◽  
Vol 28 (2) ◽  
pp. 51-57 ◽  
Author(s):  
Elisa S. Arch ◽  
Ozan Erol ◽  
Connor Bortz ◽  
Chelsea Madden ◽  
Matthew Galbraith ◽  
...  

Author(s):  
Satyanarayan Patel ◽  
Manish Kumar ◽  
Yashwant Kashyap

Present work shows waste energy (thermal/mechanical) harvesting and storage capacity in bulk lead-free ferroelectric 0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3 (0.6BZT-0.4BCT) ceramics. The thermal energy harvesting is obtained by employing the Olsen cycle under different stress biasing, whereas mechanical energy harvesting calculated using the thermo-mechanical cycle at various temperature biasing. To estimate the energy harvesting polarization-electric field loops were measured as a function of stress and temperatures. The maximum thermal energy harvesting is obtained equal to 158 kJ/m3 when the Olsen cycle operated as 25-81 °C (at contact stress of 5 MPa) and 0.25-2 kV/mm. On the other hand, maximum mechanical energy harvesting is calculated as 158 kJ/m3 when the cycle operated as 5-160 MPa (at a constant temperature of 25 °C) and 0.25-2 kV/mm. It is found that the stress and temperature biasing are not beneficial for thermal and mechanical energy harvesting. Further, a hybrid cycle, where both stress and temperature are varied, is also studied to obtain enhanced energy harvesting. The improved energy conversion potential is found as 221 kJ/m3 when the cycle operated as 25-81 °C, 5-160 MPa and 0.25-2 kV/mm. The energy storage density varies from 43 to 66 kJ/m3 (increase in temperature: 25-81 °C) and 43 to 80 kJ/m3 (increase in stress: 5 to 160 MPa). Also, the pre-stress can be easily implemented on the materials, which improve energy storage density almost 100% by domain pining and ferroelastic switching. The results show that stress confinement can be an effective way to enhance energy storage.


2020 ◽  
Vol 44 (4) ◽  
pp. 225-233
Author(s):  
Michael Ernst ◽  
Björn Altenburg ◽  
Thomas Schmalz

Background: Energy-storage and return feet incorporate various design features including split toes. As a potential improvement, an energy-storage and return foot with a dedicated ankle joint was recently introduced allowing for easily accessible inversion/eversion movement. However, the adaptability of energy-storage and return feet to uneven ground and the effects on biomechanical and clinical parameters have not been investigated in detail. Objectives: To investigate the design-related ability of prosthetic feet to adapt to cross slopes and derive a theoretical model. Study design: Mechanical testing and characterization. Methods: Mechanical adaptation to cross slopes was investigated for six prosthetic feet measured by a motion capture system. A theoretical model linking the measured data with adaptations is proposed. Results: The type and degree of adaptation depends on the foot design, for example, stiffness, split toe or continuous carbon forefoot, and additional ankle joint. The model used shows high correlations with the measured data for all feet. Conclusions: The ability of prosthetic feet to adapt to uneven ground is design-dependent. The split-toe feet adapted better to cross slopes than those with continuous carbon forefeet. Joints enhance this further by allowing for additional inversion and eversion. The influence on biomechanical and clinical parameters should be assessed in future studies. Clinical relevance Knowing foot-specific ability to adapt to uneven ground may help in selecting an appropriate prosthetic foot for persons with a lower limb amputation. Faster and more comprehensive adaptations to uneven ground may lower the need for compensations and therefore increase user safety.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3332 ◽  
Author(s):  
Burak Atakan

Several methods for chemical energy storage have been discussed recently in the context of fluctuating energy sources, such as wind and solar energy conversion. Here a compression–expansion process, as also used in piston engines or compressors, is investigated to evaluate its potential for the conversion of mechanical energy to chemical energy, or more correctly, exergy. A thermodynamically limiting adiabatic compression–chemical equilibration–expansion cycle is modeled and optimized for the amount of stored energy with realistic parameter bounds of initial temperature, pressure, compression ratio and composition. As an example of the method, initial mixture compositions of methane, ethane, hydrogen and argon are optimized and the results discussed. In addition to the stored exergy, the main products (acetylene, benzene, and hydrogen) and exergetic losses of this thermodynamically limiting cycle are also analyzed, and the volumetric and specific work are discussed as objective functions. It was found that the optimal mixtures are binary methane argon mixtures with high argon content. The predicted exergy losses due to chemical equilibration are generally below 10%, and the chemical exergy of the initial mixture can be increased or chemically up-converted due to the work input by approximately 11% in such a thermodynamically limiting process, which appears promising.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Wang ◽  
Hui Wei ◽  
Runxiu Shi ◽  
Leitong Lin ◽  
Lechi Zhang ◽  
...  

AbstractThis study aimed to investigate lower-limb muscle activities in gait phases and co-contraction of one gait cycle in patients with lumbar disc herniation (LDH). This study enrolled 17 LDH patients and 17 sex- and age-matched healthy individuals. Bilateral muscle activities of the rectus femoris (RF), biceps femoris long head (BL), tibialis anterior (TA), and lateral gastrocnemius (LG) during walking were recorded. The gait cycle was divided into four phases by the heel strike and top off according to the kinematics tracks. Root mean square (RMS), mean frequency (MF), and co-contraction of surface electromyography signals were calculated. The LDH patients showed enhanced BL RMS during the single support phase (SS), second double support phase, and swing phase (SW) as well as decreased MF of RF during SS and of TA and LG during SW (p < 0.05). The co-contraction of the TA-LG was increased in LDH patients than in the control group (p < 0.05). Positive correlations were observed between TA-LG co-contraction (affected side, r = 0.557, p = 0.020; contralateral side, r = 0.627, p = 0.007) and the Oswestry disability index scores in LDH patients. LDH patients have increased BL firing rate and insufficient motor unit recruitment in specific phases in the lower limbs during walking. Dysfunction in LDH patients was associated with immoderate intermuscular co-contraction of the TA-LG during walking.


Sign in / Sign up

Export Citation Format

Share Document