Determination of Partition Coefficients and Quantitation of Headspace Volatile Compounds

1995 ◽  
Vol 67 (18) ◽  
pp. 3300-3304 ◽  
Author(s):  
Alain. Chaintreau ◽  
Andrea. Grade ◽  
Rafael. Munoz-Box
2011 ◽  
Vol 10 (8) ◽  
pp. 1081-1085 ◽  
Author(s):  
Elisabeta Chirila ◽  
Simona Dobrinas ◽  
Elena Paunescu ◽  
Gabriela Stanciu ◽  
Camelia Draghici

1985 ◽  
Vol 50 (8) ◽  
pp. 1642-1647 ◽  
Author(s):  
Štefan Baláž ◽  
Anton Kuchár ◽  
Ernest Šturdík ◽  
Michal Rosenberg ◽  
Ladislav Štibrányi ◽  
...  

The distribution kinetics of 35 2-furylethylene derivatives in two-phase system 1-octanol-water was investigated. The transport rate parameters in direction water-1-octanol (l1) and backwards (l2) are partition coefficient P = l1/l2 dependent according to equations l1 = logP - log(βP + 1) + const., l2 = -log(βP + 1) + const., const. = -5.600, β = 0.261. Importance of this finding for assesment of distribution of compounds under investigation in biosystems and also the suitability of the presented method for determination of partition coefficients are discussed.


Author(s):  
Gabriela F. Giordano ◽  
Vitoria M. S. Freitas ◽  
Gabriel R. Schleder ◽  
Murilo Santhiago ◽  
Angelo L. Gobbi ◽  
...  

1975 ◽  
Vol 145 (3) ◽  
pp. 417-429 ◽  
Author(s):  
J E Barnett ◽  
G D Holman ◽  
R A Chalkley ◽  
K A Munday

6-O-methyl-, 6-O-propyl-, 6-O-pentyl- and 6-O-benzyl-D-galactose, and 6-O-methyl-, 6-O-propyl- and 6-O-pentyl-D-glucose inhibit the glucose-transport system of the human erythrocyte when added to the external medium. Penetration of 6-O-methyl-D-galactose is inhibited by D-glucose, suggesting that it is transported by the glucose-transport system, but the longer-chain 6-O-alkyl-D-galactoses penetrate by a slower D-glucose-insensitive route at rates proportional to their olive oil/water partition coefficients. 6-O-n-Propyl-D-glucose and 6-O-n-propyl-D-galactose do not significantly inhibit L-sorbose entry or D-glucose exit when present only on the inside of the cells whereas propyl-beta-D-glucopyranoside, which also penetrates the membrane slowly by a glucose-insensitive route, only inhibits L-sorbose entry or D-glucose exit when present inside the cells, and not when on the outside. The 6-O-alkyl-D-galactoses, like the other nontransported C-4 and C-6 derivatives, maltose and 4,6-O-ethylidene-D-glucose, protect against fluorodinitrobenzene inactivation, whereas propyl beta-D-glucopyranoside stimulates the inactivation. Of the transported sugars tested, those modified at C-1, C-2 and C-3 enhance fluorodinitrobenzene inactivation, where those modified at C-4 and C-6 do not, but are inert or protect against inactivation. An asymmetric mechanism is proposed with two conformational states in which the sugar binds to the transport system so that C-4 and C-6 are in contact with the solvent on the outside and C-1 is in contact with the solvent on the inside of the cell. It is suggested that fluorodinitrobenzene reacts with the form of the transport system that binds sugars at the inner side of the membrane. An Appendix describes the theoretical basis of the experimental methods used for the determination of kinetic constants for non-permeating inhibitors.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 266
Author(s):  
Hugo L. Rainho ◽  
Weliton D. Silva ◽  
José Maurício S. Bento

A semiochemical-based attractant for Euplatypus parallelus was identified and field-tested. Analyses of headspace volatile extracts of conspecific males revealed the presence of 1-hexanol along with lesser amounts of 3-methyl-1-butanol, hexyl acetate, 1-octanol and trans-geraniol, which were not found in equivalent extracts from females. Emission of 1-hexanol coincided with the emergence of adults of both sexes during afternoon hours. A synthetic blend of these compounds, with and without ethanol, was tested in the field. The blend alone attracted a small number of females and no males. Ethanol alone attracted a small number of females (not significantly different from the blend alone) but significantly more males than the blend alone. More females were caught with the blend combined with ethanol than the combined catch of either attractant alone, suggesting a synergistic interaction. Attraction of males appeared to be a response to ethanol alone. During the trials, two potential natural enemies of E. parallelus were caught, indicating that they might be eavesdropping on the semiochemical channels of their prey. Traps containing the male-specific volatile compounds combined with ethanol could be applied as an effective attractant for detection and monitoring of E. parallelus as well as for recruitment of its natural enemies.


Langmuir ◽  
2007 ◽  
Vol 23 (21) ◽  
pp. 10463-10470 ◽  
Author(s):  
Laurence Dupont-Leclercq ◽  
Sébastien Giroux ◽  
Bernard Henry ◽  
Patrice Rubini

Sign in / Sign up

Export Citation Format

Share Document