Long-Term Dynamic Imaging of Cellular Processes Using an AIE Lipid Order Probe in the Dual-Color Mode

Author(s):  
Yue Zheng ◽  
Yiwen Ding ◽  
Xiaokun Zheng ◽  
Chu Zhang ◽  
Yanli Zhang ◽  
...  
2020 ◽  
Vol 33 (6) ◽  
pp. 727-733
Author(s):  
Jasmine A. T. DiCesare ◽  
Alexander M. Tucker ◽  
Irene Say ◽  
Kunal Patel ◽  
Todd H. Lanman ◽  
...  

Cervical spondylosis is one of the most commonly treated conditions in neurosurgery. Increasingly, cervical disc replacement (CDR) has become an alternative to traditional arthrodesis, particularly when treating younger patients. Thus, surgeons continue to gain a greater understanding of short- and long-term complications of arthroplasty. Here, the authors present a series of 4 patients initially treated with Mobi-C artificial disc implants who developed postoperative neck pain. Dynamic imaging revealed segmental kyphosis at the level of the implant. All implants were locked in the flexion position, and all patients required reoperation. This is the first reported case series of symptomatic segmental kyphosis after CDR.


2021 ◽  
Vol 22 ◽  
Author(s):  
Sitansu Sekhar Nanda ◽  
Md Imran Hossain ◽  
Heongkyu Ju ◽  
Dong Kee Yi

Background: GSK-3 inhibitors became a novel therapeutic agent treating cancer. There are so many uses of GSK-3 inhibitor for treating cancer like breast cancer, lung cancer, gastric cancer, and no pathological changes are shown by the morphological examination of GSK-3. Objectives: This review describes the recent affairs using GSK-3 inhibitors, mainly treating in colon carcinoma. The authorsAuthors have also shown the different mechanisms of different GSK-3 inhibitors for treating various cancers and proposed some mechanisms that can be useful for further research by GSK-3 inhibitors for various cancerscancer including colon carcinoma. Results: The majority of the cancers and pre-cancerous lesions are stimulated by the transformation of membrane-bound arachidonic acid (AA) to eicosanoids for the viability, proliferation, and spread of cancer. GSK-3 inhibitors can reinstate hostility to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) responsiveness in gastric adenocarcinoma cells. GSK-3, the final enzyme in glycogen synthesis, is a serine/threonine kinase that phosphorylates varied sequences that are more than a hundred in number, within proteins in an array of heterogeneous pathways. It is an essential module of an exceptionally huge number of cellular processes, a fundamental role in many metabolic processes and diseases. Many patients achieve long term remission with outstanding survival diagnosed with colon cancer through it. Conclusion: Before the extensive application of these proposed mechanisms of GSK-3 inhibitor, further evaluation and clinical studies are needed. After doing the appropriate clinical studies and morphological examination, it can be appropriate for extensive application.


Author(s):  
Ana Turchetti-Maia ◽  
Tal Shomrat ◽  
Binyamin Hochner

We show that the cephalopod vertical lobe (VL) is a promising system for assessing the function and organization of the neuronal circuitry mediating complex learning and memory behavior. Studies in octopus and cuttlefish VL networks suggest an independent evolutionary convergence into a matrix organization of a divergence-convergence (“fan-out fan-in”) network with activity-dependent long-term plasticity mechanisms. These studies also show, however, that the properties of the neurons, neurotransmitters, neuromodulators, and mechanisms of induction and maintenance of long-term potentiation are different from those evolved in vertebrates and other invertebrates, and even highly variable among these two cephalopod species. This suggests that complex networks may have evolved independently multiple times and that, even though memory and learning networks share similar organization and cellular processes, there are many molecular ways of constructing them.


2017 ◽  
Vol 23 (6) ◽  
pp. 587-604 ◽  
Author(s):  
Julien Gibon ◽  
Philip A. Barker

Neurotrophins have been intensively studied and have multiple roles in the brain. Neurotrophins are first synthetized as proneurotrophins and then cleaved intracellularly and extracellularly. Increasing evidences demonstrate that proneurotrophins and mature neurotrophins exerts opposing role in the central nervous system. In the present review, we explore the role of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) and their respective proform in cellular processes related to learning and memory. We focused on their roles in synaptic activity and plasticity in the brain with an emphasis on long-term potentiation, long-term depression, and basal synaptic transmission in the hippocampus and the temporal lobe area. We also discuss new findings on the role of the Val66Met polymorphism on the BDNF propeptide on synaptic activity.


Reproduction ◽  
2021 ◽  
Author(s):  
Vasiliki E. Mourikes ◽  
Jodi A Flaws

The ovaries play a critical role in female reproductive health because they are the site of oocyte maturation and sex steroid hormone production. The unique cellular processes that take place within the ovary make it a susceptible target for chemical mixtures. Herein, we review the available data regarding the effects of chemical mixtures on the ovary, focusing on development, folliculogenesis, and steroidogenesis. The chemical mixtures discussed include those to which women are exposed to environmentally, occupationally, and medically. Following a brief introduction to chemical mixture components, we describe the effects of chemical mixtures on ovarian development, folliculogenesis, and steroidogenesis. Further, we discuss the effects of chemical mixtures on corpora lutea and transgenerational outcomes. Identifying the effects of chemical mixtures on the ovaries is paramount to preventing and treating mixture-inducing toxicity of the ovary that has long-term consequences such as infertility and ovarian disease.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 666 ◽  
Author(s):  
Evangelos Koustas ◽  
Panagiotis Sarantis ◽  
Athanasios G. Papavassiliou ◽  
Michalis V. Karamouzis

The emergence of cancer immunotherapy has already shown some remarkable results, having changed the treatment strategy in clinical practice for solid tumors. Despite these promising long-term responses, patients seem to lack the ability to respond to immune checkpoint inhibitors, thus demonstrating a primary resistance to immunotherapy. Moreover, a significant number of patients who initially respond to treatment eventually acquire resistance to immunotherapy. Both resistance mechanisms are a result of a complex interaction among different molecules, pathways, and cellular processes. Several resistance mechanisms, such as tumor microenvironment modification, autophagy, genetic and epigenetic alterations, tumor mutational burden, neo-antigens, and modulation of gut microbiota have already been identified, while more continue to be uncovered. In this review, we discuss the latest milestones in the field of immunotherapy, resistance mechanisms against this type of therapy as well as putative therapeutic strategies to overcome resistance in solid tumors.


2014 ◽  
Vol 9 (10) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Mitsuhiro Nakamura ◽  
Tomoko Suzuki ◽  
Mai Takagi ◽  
Hirotoshi Tamura ◽  
Toshiya Masuda

Bioactive compounds from citrus fruits contribute many benefits to human health. Extracellular signal-regulated kinase (ERK) signaling plays an important role in the regulation of multiple cellular processes. Activation of the ERK-cAMP response element binding protein (CREB) signaling is required for long-term memory formation. In this study, auraptene, phellopterin, thymol, coniferyl alcohol 9-methyl ether and methyl ferulate were isolated from Citrus junos. Among the five compounds isolated, auraptene and phellopterin increased the phosphorylation of ERK and CREB. This study provides, to our knowledge, the first evidence that phellopterin potently stimulates the phosphorylation of ERK and CREB. Phellopterin could be a novel neuroprotective agent.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ramiro Tintorelli ◽  
Pablo Budriesi ◽  
Maria Eugenia Villar ◽  
Paul Marchal ◽  
Pamela Lopes da Cunha ◽  
...  

AbstractThe superiority of spaced over massed learning is an established fact in the formation of long-term memories (LTM). Here we addressed the cellular processes and the temporal demands of this phenomenon using a weak spatial object recognition (wSOR) training, which induces short-term memories (STM) but not LTM. We observed SOR-LTM promotion when two identical wSOR training sessions were spaced by an inter-trial interval (ITI) ranging from 15 min to 7 h, consistently with spaced training. The promoting effect was dependent on neural activity, protein synthesis and ERKs1/2 activity in the hippocampus. Based on the “behavioral tagging” hypothesis, which postulates that learning induces a neural tag that requires proteins to induce LTM formation, we propose that retraining will mainly retag the sites initially labeled by the prior training. Thus, when weak, consecutive training sessions are experienced within an appropriate spacing, the intracellular mechanisms triggered by each session would add, thereby reaching the threshold for protein synthesis required for memory consolidation. Our results suggest in addition that ERKs1/2 kinases play a dual role in SOR-LTM formation after spaced learning, both inducing protein synthesis and setting the SOR learning-tag. Overall, our findings bring new light to the mechanisms underlying the promoting effect of spaced trials on LTM formation.


2013 ◽  
Vol 8 (6) ◽  
pp. 1019-1027 ◽  
Author(s):  
Daphne H E W Huberts ◽  
Sung Sik Lee ◽  
Javier González ◽  
Georges E Janssens ◽  
Ima Avalos Vizcarra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document