Resolving Severe Elemental Isobaric Interferences with a Combined Atomic and Molecular Ionization Source–Orbitrap Mass Spectrometry Approach: The 87Sr and 87Rb Geochronology Pair

Author(s):  
Edward D. Hoegg ◽  
Simon Godin ◽  
Joanna Szpunar ◽  
Ryszard Lobinski ◽  
David W. Koppenaal ◽  
...  
2021 ◽  
Vol 18 (10) ◽  
pp. 2167-2173
Author(s):  
Fang Ping Wu ◽  
Liang Hong Liu ◽  
Ping Jin ◽  
Hong Pu ◽  
Zu Fu Yao ◽  
...  

Purpose: To study the metabolites of phloretin in vivo using ultra-high performance liquid chromatography linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap). Methods: After administration of phloretin (50 mg/kg; oral route) to six rats, blood samples were taken from each animal. Each sample was then subjected to solid-phase extraction to prepare it for chromatographic/spectroscopic analysis. Finally, each sample was analyzed using UHPLC-LTQOrbitrap with a negative-mode electrospray ionization source. Results: Based on mass measurements, chromatographic retention times, and MS2 fragmentation ions, we detected and identified phloretin and 16 metabolites of the drug in vivo in rats. Metabolic reactions of phloretin included glucosylation and glucuronide conjugation, diglucuronide conjugation, glucosylation and sulfate conjugation, sulfate conjugation, glucuronide conjugation, and glucosylation and hydroxylation. Conclusion: The findings provide a better understanding of phloretin metabolism and metabolites, and new information about their effective forms, pharmacological actions, metabolic fate, and toxic actions in vivo.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 2496-2499 ◽  
Author(s):  
Jiying Pei ◽  
Kefu Yu ◽  
Yinghui Wang

Ambient ionization source, thermal bursting ionization (TBI), was characterized for complex liquid sample analysis with mass spectrometry.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 960
Author(s):  
Haibo Hu ◽  
Yau Lee-Fong ◽  
Jinnian Peng ◽  
Bin Hu ◽  
Jialin Li ◽  
...  

The roots of Fissistigma oldhamii (FO) are widely used as medicine with the effect of dispelling wind and dampness, promoting blood circulation and relieving pains, and its fruits are considered delicious. However, Hakka people always utilize its above-ground parts as a famous folk medicine, Xiangteng, with significant differences from literatures. Studies of chemical composition showed there were multiple aristolactams that possessed high nephrotoxicity, pending evaluation research about their distribution in FO. In this study, a sensitive, selective, rapid and reliable method was established to comparatively perform qualitative and semi-quantitative analysis of the constituents in roots, stems, leaves, fruits and insect galls, using an Ultra-High-Performance Liquid Chromatography coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry (UPLC-Q-Exactive Orbitrap MS, or Q-Exactive for short). To make more accurate identification and comparison of FO chemicals, all MS data were aligned and screened by XCMS, then their structures were elucidated according to MSn ion fragments between the detected and standards, published ones or these generated by MS fragmenter. A total of 79 compounds were identified, including 33 alkaloids, 29 flavonoids, 11 phenylpropanoids, etc. There were 54 common components in all five parts, while another 25 components were just detected in some parts. Six toxic aristolactams were detected in this experiment, including aristolactam AII, AIIIa, BII, BIII, FI and FII, of which the relative contents in above-ground stems were much higher than roots. Meanwhile, multivariate statistical analysis was performed and showed significant differences both in type and content of the ingredients within all FO parts. The results implied that above-ground FO parts should be carefully valued for oral administration and eating fruits. This study demonstrated that the high-resolution mass spectrometry coupled with multivariate statistical methods was a powerful tool in compound analysis of complicated herbal extracts, and the results provide the basis for its further application, scientific development of quality standard and utilization.


2021 ◽  
Vol 142 ◽  
pp. 110214
Author(s):  
Dong Zhang ◽  
Xiaoliang Duan ◽  
Bo Shang ◽  
Yu Hong ◽  
Hui Sun

Sign in / Sign up

Export Citation Format

Share Document