Hierarchical Fluorescence Imaging Strategy for Assessment of the Sialylation Level of Lipid Rafts on the Cell Membrane

Author(s):  
Huifang Shi ◽  
Younan Chen ◽  
Yiran Li ◽  
Liusheng Chen ◽  
Haiqi Wang ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Natsuko Kawano ◽  
Kaoru Yoshida ◽  
Kenji Miyado ◽  
Manabu Yoshida

Cell membranes are composed of many different lipids and protein receptors, which are important for regulating intracellular functions and cell signaling. To orchestrate these activities, the cell membrane is compartmentalized into microdomains that are stably or transiently formed. These compartments are called “lipid rafts”. In gamete cells that lack gene transcription, distribution of lipids and proteins on these lipid rafts is focused during changes in their structure and functions such as starting flagella movement and membrane fusion. In this paper, we describe the role of lipid rafts in gamete maturation, fertilization, and early embryogenesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1722-1722
Author(s):  
Prasenjit Guchhait ◽  
Perumal Thiagarajan ◽  
Jose A. Lopez

Abstract Sickle cell disease (SCD) affects millions of people worldwide, and is associated with significant morbidity and mortality. Although the clinical manifestations of the disease are very complex, much of the cause can be ascribed to occlusion of small vessels by the sickle red blood cells (RBCs). More than 30% of all deaths in SCD are due to the vasoocclusion, which results in ischemia, multiorgan failure and strokes. The proximate cause for vasoocclusion appears to be an increased adhesiveness of sickle cells to the vessel wall, and we postulate that the exposure of sulfatide on sickle cells accounts for their adhesive phenotype. Sulfatide binds with high affinity to many of the adhesion proteins known to be involved in cell adhesion to subendothelium and endothelium, including von Willebrand factor (VWF), thrombospondin (TSP), laminin and P-selectin. We therefore compared the expression and distribution of sulfatide in sickle cells to that in normal RBCs. When examined by flow cytometry using a previously described Alexa fluor-conjugated single-chain variable fragment (scFv) antibody, PA38, we found that sickle cells displayed more sulfatide on surface than normal RBCs (mean fluorescence 1.6±0.5 Vs. 0.9±0.3, p<0.05, n=6). When we examined sulfatide distribution by confocal microscopy using the labeled PA38, we found it to label more intensely in sickle cells than the normal RBCs and to be distributed heterogeneously, with areas of intense staining. The heterogeneous distribution suggested that the sulfatide might exist within membrane-microdomains/lipid rafts. We tested this possibility by sucrose density centrifugation of detergent lysates (1% Triton X-100) of erythrocyte ghosts from sickle and normal cells and found that sulfatide was distributed in raft fractions, as defined by being in the fractions containing the raft marker flotillin-1. Consistent with an important role for sulfatide in sickle vaso-occlusion, we found that both normal and sickle RBCs attached under flow to the surface of histamine-activated human umbilical vein endothelial cells (HUVEC). The sickle RBCs adhered more avidly, as they were able to rest higher shear stresses (1.86 and 2.5 dyne/cm2) than the normal RBCs before detaching Greater than 50% of the initial adhesion was inhibited by treatment with the anti-sulfatide scFv, PA38. We obtained similar results in terms of the greater shear resistance of sickle cells and the ability of PA38 to inhibit adhesion when we compared the adhesion of sickle and normal RBCs to surfaces coated with the adhesive ligands such as VWF (the ultra-large form) and laminin. Thus, our study elucidates an important role of red cell membrane sulfatide in sickle cell adhesion to the endothelium and to adhesive ligands, and suggests that this mechanism is important pathophysiologically in the development of sickle vaso-occlusion. Sulfatide distribution into lipid rafts may allow the formation of adhesive patches that facilitate adhesion.


2003 ◽  
Vol 275 (1-2) ◽  
pp. 161-168 ◽  
Author(s):  
S. Thomas ◽  
R.S. Kumar ◽  
S. Casares ◽  
T.-D. Brumeanu

2017 ◽  
Vol 29 (4) ◽  
pp. 778 ◽  
Author(s):  
Annick Bergeron ◽  
Christine Guillemette ◽  
Marc-André Sirard ◽  
François J. Richard

Lipids rafts are specialised membrane microdomains involved in cell signalling that can be isolated as detergent-resistant membranes (DRMs). The second messenger cyclic AMP (cAMP) has a central role in cell signalling in the ovary and its degradation is carried out by the phosphodiesterase (PDE) enzyme family. We hypothesised that PDEs could be functionally present in the lipid rafts of porcine mural granulosa cell membranes. PDE6C, PDE8A and PDE11A were detected by dot blot in the DRMs and the Triton-soluble fraction of the mural granulosa cells membrane and the cytosol. As shown by immunocytochemistry, PDEs showed clear immunostaining in mural granulosa cell membranes and the cytosol. Interestingly, cAMP–PDE activity was 18 times higher in the DRMs than in the Triton-soluble fraction of cell membranes and was 7.7 times higher in the cytosol than in the DRMs. cAMP–PDE activity in mural granulosa cells was mainly contributed by the PDE8 and PDE11 families. This study shows that PDEs from the PDE8 and PDE11 families are present in mural granulosa cells and that the cAMP–PDE activity is mainly contributed by the cytosol. In the cell membrane, the cAMP–PDE activity is mainly contributed by the DRMs. In addition, receptors for prostaglandin E2 and LH, two G-protein-coupled receptors, are present in lipid rafts and absent from the non-raft fraction of the granulosa cell membrane. These results suggest that in these cells, the lipid rafts exist as a cell-signalling platform and PDEs are one of the key enzyme families present in the raft.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 552-552
Author(s):  
Jae-Woong Lee ◽  
Huimin Geng ◽  
Derek S Dinson ◽  
Gang Xiao ◽  
Kadriye Nehir Cosgun ◽  
...  

Abstract Background & Hypothesis: B cell receptor (BCR) signaling and oncogenic tyrosine kinases that mimic BCR-signaling in B-lineage leukemia and lymphoma depend on assembly of membrane proximal signaling complexes. Signalosomes in normal BCR- and oncogene (e.g. BCR-ABL1, RAS-pathway lesions) signal transduction are recruited to phospholipid anchors in lipid rafts. The robustness of these complexes depends on cholesterol accumulation in lipid rafts. Here we identified the interferon-induced transmembrane protein IFITM3 as a central regulator of cholesterol in lipid rafts. Results: IFITM3 is mostly localized to endosomal compartments. By antagonizing VAP-A and oxysterol-binding protein 1 (OSBP1), IFITM3 promotes cholesterol accumulation and solidifies the endosomal membrane. This mechanism is particular important in anti-viral immunity, to "trap" intraluminal viral particles for lysosomal degradation. In B-cells, IFITM3 can translocate to the cell membrane and form a complex with the BCR and its co-receptors CD19, CD81 and CD21. While the functional significance of membrane expression of IFITM3 on B-cells was not known, we found that higher IFITM3 mRNA levels at the time of diagnosis represents a strong predictor of poor clinical outcome for children (COG P9906; P=0.006; n=207) and adults (ECOG E2993; P=0.014; n=215) with B-ALL. In addition, higher than median IFITM3 mRNA levels at the time of diagnosis were associated with a higher risk of relapse and positive MRD status at the end of induction chemotherapy in B-ALL and other B-cell malignancies. Interestingly, IFITM3 is a transcriptional target and strongly repressed by IKZF1 (Ikaros) a potent tumor suppressor in B- ALL and high IFITM3 mRNA levels represents a biomarker for patients with IKZF1-deletion. While its membrane-topology can vary in different cell types, we found that IFITM3 functions as a dual-pass transmembrane protein in tight association with CD19 and the Iga and Igb signaling chains of the BCR in B-ALL and B-cell lymphoma cells. To study the function of Ifitm3 in a model for human pre-B ALL, pre-B cells from Ifitm3-/- mice were transformed with BCR-ABL1 or oncogenic NRASG12D. Strikingly, deletion of IFITM3 resulted in destabilization of lipid rafts, loss of CD19 surface expression and loss of PI3K signaling. Ifitm3-/- leukemia cells could not sustain oncogenic signaling from BCR-ABL1 or oncogenic NRASG12D and failed to initiate fatal leukemia in transplant recipient mice. These changes were paralleled by G0/1 cell cycle arrest (P<0.001), loss of colony formation capacity (P=0.0004) and increased propensity to apoptosis. In mechanistic studies, we identified type II transmembrane topology for IFITM3 at plasma membrane with extracellular C and intracellular N terminus which interacted with CD19, LYN, SYK, PI3K and AKT (see schematic, left). Disruption of endocytic motif (20YEML23) by substitution of Tyr20 to Phe induced IFITM3 gain of function and forced accumulation of IFITM3 on the cell membrane, constitutive CD19-PI3K signaling, intracellular calcium mobilization, homotypic cellular aggregation and massively increased proliferation of pre-B ALL cells (see schematic, right). Conversely, inducible overexpression of IKZF1 transcriptionally silenced IFITM3, resulting in loss of IFITM3 expression, reduction of lipid rafts and impairment of membrane-associated oncogenic signaling. Through Filipin-based cholesterol staining, we found Ifitm3-/- pre-B cells have reduced levels of cholesterol in lipid rafts, which causes disruption of lipid rafts formation, as reflected by decreased levels of ganglioside GM1. Notably, the homeostatic cholesterol fluidity by presence of IFITM3 on plasma membrane was also required for initiation of B- and T cell receptor signaling in mature B- and T cell lymphoma to induce Ca2+ mobilization. Conclusions: These findings identify novel role of the viral immunity IFITM3 surface receptor as a central regulator of cell membrane cholesterol fluidity and critical mediator of sustained oncogenic tyrosine kinase (BCR-ABL1) and RAS (NRASG12D) signaling in B cell malignancies. In promoting cholesterol aggregates in lipid rafts, IFITM3 protects healthy individuals from potentially lethal viral infections, but also enables oncogenic signaling by providing a robust membrane scaffold for tyrosine kinase and RAS-pathway oncogenes. Figure Figure. Disclosures Wiita: Sutro Biopharma: Research Funding; TeneoBio: Research Funding.


2019 ◽  
Vol 31 (6) ◽  
pp. 1166 ◽  
Author(s):  
M. L. Gould ◽  
H. D. Nicholson

In normal prostate cells, cell membrane receptors are located within signalling microdomains called caveolae. During cancer progression, caveolae are lost and sequestered receptors move out onto lipid rafts. The aim of this study was to investigate whether a change in the localisation of receptors out of caveolae and onto the cell membrane increased cell proliferation invitro, and to determine whether this is related to changes in the cell signalling pathways. Normal human prostate epithelial cells (PrEC) and androgen-independent (PC3) cancer cells were cultured with 10nM dihydrotestosterone (DHT). The effects of oxytocin (OT) and gonadal steroids on proliferation were assessed using the MTS assay. Androgen receptor (AR) and oxytocin receptor (OTR) expression was identified by immunofluorescence and quantified by western blot. OTR and lipid raft staining was determined using Pearson’s correlation coefficient. Protein–protein interactions were detected and the cell signalling pathways identified. Treatment with OT did not affect the proliferation of PrEC. In PC3 cells, OT or androgen alone increased cell proliferation, but together had no effect. In normal cells, OTR localised to the membrane and AR localised to the nucleus, whereas in malignant cells both OTR and AR were identified in the cell membrane. Colocalisation of OTR and AR increased following treatment with androgens. Significantly fewer OTR/AR protein–protein interactions were seen in PrEC. With OT treatment, several cell signalling pathways were activated. Movement of OTR out of caveolae onto lipid rafts is accompanied by activation of alternative signal transduction pathways involved in stimulating increased cell proliferation.


2017 ◽  
Vol 53 (29) ◽  
pp. 4136-4139 ◽  
Author(s):  
Suyan Liu ◽  
Wei Zheng ◽  
Kui Wu ◽  
Yu Lin ◽  
Feifei Jia ◽  
...  

A correlated ToF-SIMS and CLSM imaging strategy was developed to visualize the subcellular distribution of an organoruthenium anticancer complex, showing its accumulation in both cell membrane and nuclei and verifying its dual-targeting feature.


Sign in / Sign up

Export Citation Format

Share Document