Cell Membrane Sulfatide Promotes Sickle Cell Adhesion to Endothelium.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1722-1722
Author(s):  
Prasenjit Guchhait ◽  
Perumal Thiagarajan ◽  
Jose A. Lopez

Abstract Sickle cell disease (SCD) affects millions of people worldwide, and is associated with significant morbidity and mortality. Although the clinical manifestations of the disease are very complex, much of the cause can be ascribed to occlusion of small vessels by the sickle red blood cells (RBCs). More than 30% of all deaths in SCD are due to the vasoocclusion, which results in ischemia, multiorgan failure and strokes. The proximate cause for vasoocclusion appears to be an increased adhesiveness of sickle cells to the vessel wall, and we postulate that the exposure of sulfatide on sickle cells accounts for their adhesive phenotype. Sulfatide binds with high affinity to many of the adhesion proteins known to be involved in cell adhesion to subendothelium and endothelium, including von Willebrand factor (VWF), thrombospondin (TSP), laminin and P-selectin. We therefore compared the expression and distribution of sulfatide in sickle cells to that in normal RBCs. When examined by flow cytometry using a previously described Alexa fluor-conjugated single-chain variable fragment (scFv) antibody, PA38, we found that sickle cells displayed more sulfatide on surface than normal RBCs (mean fluorescence 1.6±0.5 Vs. 0.9±0.3, p<0.05, n=6). When we examined sulfatide distribution by confocal microscopy using the labeled PA38, we found it to label more intensely in sickle cells than the normal RBCs and to be distributed heterogeneously, with areas of intense staining. The heterogeneous distribution suggested that the sulfatide might exist within membrane-microdomains/lipid rafts. We tested this possibility by sucrose density centrifugation of detergent lysates (1% Triton X-100) of erythrocyte ghosts from sickle and normal cells and found that sulfatide was distributed in raft fractions, as defined by being in the fractions containing the raft marker flotillin-1. Consistent with an important role for sulfatide in sickle vaso-occlusion, we found that both normal and sickle RBCs attached under flow to the surface of histamine-activated human umbilical vein endothelial cells (HUVEC). The sickle RBCs adhered more avidly, as they were able to rest higher shear stresses (1.86 and 2.5 dyne/cm2) than the normal RBCs before detaching Greater than 50% of the initial adhesion was inhibited by treatment with the anti-sulfatide scFv, PA38. We obtained similar results in terms of the greater shear resistance of sickle cells and the ability of PA38 to inhibit adhesion when we compared the adhesion of sickle and normal RBCs to surfaces coated with the adhesive ligands such as VWF (the ultra-large form) and laminin. Thus, our study elucidates an important role of red cell membrane sulfatide in sickle cell adhesion to the endothelium and to adhesive ligands, and suggests that this mechanism is important pathophysiologically in the development of sickle vaso-occlusion. Sulfatide distribution into lipid rafts may allow the formation of adhesive patches that facilitate adhesion.

2011 ◽  
Vol 105 (06) ◽  
pp. 1046-1052 ◽  
Author(s):  
Zhou Zhou ◽  
Perumal Thiagarajan ◽  
Mark Udden ◽  
José López ◽  
Prasenjit Guchhait

SummaryEnhanced adhesion of sickle erythrocytes to the vascular endothelium and subendothelial matrix is fundamental to the development of vascular occlusion in sickle cell disease. Erythrocyte membrane sulfatide is implicated in the pathogenesis of vasoocclusive crises in sickle cell disease (SCD) patients. Because previous evidence linking sulfatide to cell adhesion has largely been circumstantial due to a lack of reagents that specifically target sulfatide, we used two sulfatide-specific strategies to address the role of erythrocyte membrane sulfatide in sickle cell adhesion to the vascular endothelium: a single-chain fragment variable chain (scFv) antibody against sulfatide as well as cerebroside sulfotransferase-deficient mice incapable of synthesising sulfatide. The sickle erythrocytes from mice and humans adhered at a greater extent and at higher shear stresses to activated endothelium than normal erythrocytes, and approximately 60% of the adhesion was prevented by the anti-sulfatide scFv. Similarly, the extent of adhesion of sulfatide-deficient erythrocytes was lower than normal erythrocytes. These findings suggest an important role for membrane sulfatide in sickle cell disease pathophysiology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 626-626
Author(s):  
Prasenjit Guchhait ◽  
Corie Shrimpton ◽  
Kochi Honke ◽  
Perumal Thiagarajan ◽  
Jose A. Lopez

Abstract Sulfatide (galactocylceramide 3′-sulfate) is a sulfated glycosphingolipid expressed on the surfaces of erythrocytes, leukocytes, platelets and a variety other cells, that is known to interact with several cell adhesion molecules involved in hemostasis, including von Willebrand factor (VWF), laminin, thrombospondin, P-selectin and β2-glycoprotein I. Because these ligands are involved in many platelet adhesive interactions, we hypothesize that membrane sulfatide plays an important role in these processes. To examine this, we have cloned and purified a sulfatide-specific single-chain variable fragment (scFv) antibody from a phage-display library constructed from mRNA taken from the lymphocytes of patients with systemic lupus erythematosis. This scFv, PA38, specifically bound sulfatide, and did not react with the related sphingolipids cerebroside, ceramide, or sphingomyelin, or the phospholipids phosphatidylserine, phosphatidylcholine, or phosphatidylethanolamine. Using this tool, we examined the role of sulfatide in platelet function. We observed that PA38 dose-dependently (at 5 and 10 μg/ml) inhibited the aggregation of human platelets induced by either collagen or ADP. A control scFv produced in a similar manner had no effect. Furthermore, PA38 delayed platelet plug formation by 23 sec (with collagen-ADP agonist) and 46 sec (with collagen-epinephrine) in whole blood from normal human donors, as measured in a platelet function analyzer, PFA-100 (Dade Behring). Further, to verify that this was a sulfatide-specific effect, we compared collagen-induced platelet aggregation in normal mice to that of mice deficient in cerebroside sulfotransferase (CST)—a critical enzyme in the sulfatide synthetic pathway. The CST−/− mice fail to express sulfatide on the cell surface, and displayed defective platelet aggregation. Consistent with this, the PA38 also significantly inhibited collagen-induce platelet aggregation in wild-type mice. Given the importance of lipid rafts in signaling and adhesive processes, we looked for the localization of sulfatide in these membrane microdomains. Indeed, we found that sulfatide is enriched in lipid rafts suggesting a role for sulfatide in lipid-raft mediated events. Thus, we provide evidence for a key role of a membrane lipid, sulfatide in the adhesive interactions involved in platelet function. With one notable exception, the key adhesive roles in platelet-platelet interaction have all previously been assigned to proteins.


2017 ◽  
Vol 29 (4) ◽  
pp. 778 ◽  
Author(s):  
Annick Bergeron ◽  
Christine Guillemette ◽  
Marc-André Sirard ◽  
François J. Richard

Lipids rafts are specialised membrane microdomains involved in cell signalling that can be isolated as detergent-resistant membranes (DRMs). The second messenger cyclic AMP (cAMP) has a central role in cell signalling in the ovary and its degradation is carried out by the phosphodiesterase (PDE) enzyme family. We hypothesised that PDEs could be functionally present in the lipid rafts of porcine mural granulosa cell membranes. PDE6C, PDE8A and PDE11A were detected by dot blot in the DRMs and the Triton-soluble fraction of the mural granulosa cells membrane and the cytosol. As shown by immunocytochemistry, PDEs showed clear immunostaining in mural granulosa cell membranes and the cytosol. Interestingly, cAMP–PDE activity was 18 times higher in the DRMs than in the Triton-soluble fraction of cell membranes and was 7.7 times higher in the cytosol than in the DRMs. cAMP–PDE activity in mural granulosa cells was mainly contributed by the PDE8 and PDE11 families. This study shows that PDEs from the PDE8 and PDE11 families are present in mural granulosa cells and that the cAMP–PDE activity is mainly contributed by the cytosol. In the cell membrane, the cAMP–PDE activity is mainly contributed by the DRMs. In addition, receptors for prostaglandin E2 and LH, two G-protein-coupled receptors, are present in lipid rafts and absent from the non-raft fraction of the granulosa cell membrane. These results suggest that in these cells, the lipid rafts exist as a cell-signalling platform and PDEs are one of the key enzyme families present in the raft.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4348-4358 ◽  
Author(s):  
A Kumar ◽  
JR Eckmam ◽  
RA Swerlick ◽  
TM Wick

Sickle-cell adherence to endothelium has been hypothesized to initiate or contribute to microvascular occlusion and pain episodes. Adherence involves plasma proteins, endothelial-cell adhesion molecules, and receptors on sickle erythrocytes. It has previously been reported that sickle reticulocytes express the alpha 4 beta 1 integrin receptor and bind to cytokine-activated endothelium via an alpha 4 beta 1/vascular-cell adhesion molecule-1 (VCAM-1) interaction. To elucidate other roles for alpha 4 beta 1 in sickle-cell adherence, the ability of activated alpha 4 beta 1 to promote adhesion to endothelium via a ligand different than VCAM-1 was explored. Adherence assays were performed under dynamic conditions at a shear stress of 1 dyne/cm2. Preincubation of sickle erythrocytes with phorbol 12,13-dibutyrate (PDBu) increased adherence of sickle cells eightfold as compared with untreated sickle cells. Normal erythrocytes, whether treated with PDBu or not, did not adhere to the endothelium. Activating anti-beta 1 antibodies 4B4 and 8A2 also increased the adhesion of sickle, but not normal, red blood cell (RBC) adhesion to endothelium. Anti-alpha 4 antibodies HP1/2 and HP2/1, inhibitory antibody 4B5, or an RGD peptide inhibited sickle-cell adherence induced by PDBu. Additional studies were undertaken to examine if fibronectin, a ligand for activated alpha 4 beta 1, was involved in PDBu-induced sickle erythrocyte adherence. Adherence of PDBu-treated sickle cells was completely inhibited by the CS-1 peptide of fibronectin. Fibronectin was detected on the surface of washed endothelium using an antifibronectin antibody in enzyme-linked immunosorbent assays. Antifibronectin antibody pretreatment of endothelial cells inhibited PDBu-induced adherence by 79% +/-17%. Incubation of sickle RBCs with exogenous fibronectin after PDBu treatment inhibited adherence 86% +/- 8%. Taken together, these data suggest that endothelial-bound fibronectin mediates adherence of PDBu- treated sickle cells. Interleukin-8 (IL-8), a chemokine released in response to bacterial infection, viral infection, or other injurious agents, and known to activate integrins, also increased adherence of sickle erythrocytes to endothelial cells via fibronectin. This novel adherence pathway involving sickle-cell alpha 4 beta 1 activated by PDBu or IL-8 may therefore be relevant in vivo at vascular sites that produce IL-8 or similar agonists in response to vascular injury or immune activation. These observations describe ways in which inflammation and immune responses cause vasoocclusive complications in sickle-cell disease.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4348-4358 ◽  
Author(s):  
A Kumar ◽  
JR Eckmam ◽  
RA Swerlick ◽  
TM Wick

Abstract Sickle-cell adherence to endothelium has been hypothesized to initiate or contribute to microvascular occlusion and pain episodes. Adherence involves plasma proteins, endothelial-cell adhesion molecules, and receptors on sickle erythrocytes. It has previously been reported that sickle reticulocytes express the alpha 4 beta 1 integrin receptor and bind to cytokine-activated endothelium via an alpha 4 beta 1/vascular-cell adhesion molecule-1 (VCAM-1) interaction. To elucidate other roles for alpha 4 beta 1 in sickle-cell adherence, the ability of activated alpha 4 beta 1 to promote adhesion to endothelium via a ligand different than VCAM-1 was explored. Adherence assays were performed under dynamic conditions at a shear stress of 1 dyne/cm2. Preincubation of sickle erythrocytes with phorbol 12,13-dibutyrate (PDBu) increased adherence of sickle cells eightfold as compared with untreated sickle cells. Normal erythrocytes, whether treated with PDBu or not, did not adhere to the endothelium. Activating anti-beta 1 antibodies 4B4 and 8A2 also increased the adhesion of sickle, but not normal, red blood cell (RBC) adhesion to endothelium. Anti-alpha 4 antibodies HP1/2 and HP2/1, inhibitory antibody 4B5, or an RGD peptide inhibited sickle-cell adherence induced by PDBu. Additional studies were undertaken to examine if fibronectin, a ligand for activated alpha 4 beta 1, was involved in PDBu-induced sickle erythrocyte adherence. Adherence of PDBu-treated sickle cells was completely inhibited by the CS-1 peptide of fibronectin. Fibronectin was detected on the surface of washed endothelium using an antifibronectin antibody in enzyme-linked immunosorbent assays. Antifibronectin antibody pretreatment of endothelial cells inhibited PDBu-induced adherence by 79% +/-17%. Incubation of sickle RBCs with exogenous fibronectin after PDBu treatment inhibited adherence 86% +/- 8%. Taken together, these data suggest that endothelial-bound fibronectin mediates adherence of PDBu- treated sickle cells. Interleukin-8 (IL-8), a chemokine released in response to bacterial infection, viral infection, or other injurious agents, and known to activate integrins, also increased adherence of sickle erythrocytes to endothelial cells via fibronectin. This novel adherence pathway involving sickle-cell alpha 4 beta 1 activated by PDBu or IL-8 may therefore be relevant in vivo at vascular sites that produce IL-8 or similar agonists in response to vascular injury or immune activation. These observations describe ways in which inflammation and immune responses cause vasoocclusive complications in sickle-cell disease.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3138-3145 ◽  
Author(s):  
CL Morris ◽  
DL Rucknagel ◽  
CH Joiner

Abstract The tendency for sickle cells to adhere to each other is increased in oxygenated sickle blood in parallel with cell density. The increased adherence of these cells occurred despite their reduced deformability and diminished ability to form rouleaux. Using a method developed in our laboratory, we measured the yield stress: a sensitive index of cell- cell adhesion of deoxygenated suspensions of sickle cells. Deoxygenation of whole sickle blood to 30 to 50 mm Hg caused a significant increase in yield stress of all sickle blood samples. Deoxygenation caused a significant increase in yield stress of both dense and light sickle cells. Deoxygenation-induced increases in yield stress occurred at higher oxygen tensions for dense (= 55 mm Hg) than for light sickle cells (< 45 mm Hg). The increase in yield stress on deoxygenation was correlated with hemoglobin polymerization as assessed morphologically by sickling or by changes in relative viscosity. Thus, deoxygenation-induced cell sticking must involve small areas of strong membrane adhesion because the changes in yield stress occurred despite a reduction in rouleaux formation and surface area of membrane contact. Sickle trait red blood cells also exhibited increased yield stress on deoxygenation but only under hypertonic conditions where sickling occurred. Thus, deoxygenation-induced cell adhesion did not require prior membrane damage because it occurred in sickle trait cells. No change in yield stress was seen when deoxygenated sickle cells were suspended in buffer, but the addition of physiologic amounts of fibrinogen to buffer restored the deoxygenation-induced increase in cell adhesion. We speculate that the increase in sticking among sickle cells on deoxygenation results from spicule formation and may involve interaction of fibrinogen and possibly other plasma proteins with the cell membrane.


Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3790-3796 ◽  
Author(s):  
Neil M. Matsui ◽  
Ajit Varki ◽  
Stephen H. Embury

The adhesion of sickle erythrocytes to vascular endothelium is important to the generation of vascular occlusion. Interactions between sickle cells and the endothelium use several cell adhesion molecules. We have reported that sickle cell adhesion to endothelial cells under static conditions involves P-selectin. Others have shown that sickle cell adhesion is decreased by unfractionated heparin, but the molecular target of this inhibition has not been defined. We postulated that the adhesion of sickle cells to P-selectin might be the pathway blocked by unfractionated heparin. In this report we demonstrate that the flow adherence of sickle cells to thrombin-treated human vascular endothelial cells also uses P-selectin and that this component of adhesion is inhibited by unfractionated heparin. We also demonstrate that sickle cells adhere to immobilized recombinant P-selectin under flow conditions. This adhesion too was inhibited by unfractionated heparin, in a concentration range that is clinically attainable. These findings and the general role of P-selectin in initiating adhesion of blood cells to the endothelium suggest that unfractionated heparin may be useful in preventing painful vascular occlusion. A clinical trial to test this hypothesis is indicated.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3138-3145
Author(s):  
CL Morris ◽  
DL Rucknagel ◽  
CH Joiner

The tendency for sickle cells to adhere to each other is increased in oxygenated sickle blood in parallel with cell density. The increased adherence of these cells occurred despite their reduced deformability and diminished ability to form rouleaux. Using a method developed in our laboratory, we measured the yield stress: a sensitive index of cell- cell adhesion of deoxygenated suspensions of sickle cells. Deoxygenation of whole sickle blood to 30 to 50 mm Hg caused a significant increase in yield stress of all sickle blood samples. Deoxygenation caused a significant increase in yield stress of both dense and light sickle cells. Deoxygenation-induced increases in yield stress occurred at higher oxygen tensions for dense (= 55 mm Hg) than for light sickle cells (< 45 mm Hg). The increase in yield stress on deoxygenation was correlated with hemoglobin polymerization as assessed morphologically by sickling or by changes in relative viscosity. Thus, deoxygenation-induced cell sticking must involve small areas of strong membrane adhesion because the changes in yield stress occurred despite a reduction in rouleaux formation and surface area of membrane contact. Sickle trait red blood cells also exhibited increased yield stress on deoxygenation but only under hypertonic conditions where sickling occurred. Thus, deoxygenation-induced cell adhesion did not require prior membrane damage because it occurred in sickle trait cells. No change in yield stress was seen when deoxygenated sickle cells were suspended in buffer, but the addition of physiologic amounts of fibrinogen to buffer restored the deoxygenation-induced increase in cell adhesion. We speculate that the increase in sticking among sickle cells on deoxygenation results from spicule formation and may involve interaction of fibrinogen and possibly other plasma proteins with the cell membrane.


Author(s):  
Fatemeh Sadat Javadian ◽  
Majid Basafa ◽  
Aidin Behravan ◽  
Atieh Hashemi

Abstract Background Overexpression of the EpCAM (epithelial cell adhesion molecule) in malignancies makes it an attractive target for passive immunotherapy in a wide range of carcinomas. In comparison with full-length antibodies, due to the small size, the scFvs (single-chain variable fragments) are more suitable for recombinant expression in E. coli (Escherichia coli). However, the proteins expressed in large amounts in E. coli tend to form inclusion bodies that need to be refolded which may result in poor recovery of bioactive proteins. Various engineered strains were shown to be able to alleviate the insolubility problem. Here, we studied the impact of four E. coli strains on the soluble level of anti-EpEX-scFv (anti-EpCAM extracellular domain-scFv) protein. Results Although results showed that the amount of soluble anti-EpEX-scFv obtained in BL21TM (DE3) (114.22 ± 3.47 mg/L) was significantly higher to those produced in the same condition in E. coli RosettaTM (DE3) (71.39 ± 0.31 mg/L), and OrigamiTM T7 (58.99 ± 0.44 mg/L) strains, it was not significantly different from that produced by E. coli SHuffleTM T7 (108.87 ± 2.71 mg/L). Furthermore, the highest volumetric productivity of protein reached 318.29 ± 26.38 mg/L in BL21TM (DE3). Conclusions Although BL21TM (DE3) can be a suitable strain for high-level production of anti-EpEX-scFv protein, due to higher solubility yield (about 55%), E. coli SHuffleTM T7 seems to be better candidate for soluble production of scfv compared to BL21TM (DE3) (solubility yield of about 30%).


1998 ◽  
Vol 142 (1) ◽  
pp. 69-84 ◽  
Author(s):  
A.K. Kenworthy ◽  
M. Edidin

Membrane microdomains (“lipid rafts”) enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched in GPI- anchored proteins in intact cell membranes, we used a novel form of digital microscopy, imaging fluorescence resonance energy transfer (FRET), which extends the resolution of fluorescence microscopy to the molecular level (&lt;100 Å). We detected significant energy transfer between donor- and acceptor-labeled antibodies against the GPI-anchored protein 5′ nucleotidase (5′ NT) at the apical membrane of MDCK cells. The efficiency of energy transfer correlated strongly with the surface density of the acceptor-labeled antibody. The FRET data conformed to theoretical predictions for two-dimensional FRET between randomly distributed molecules and were inconsistent with a model in which 5′ NT is constitutively clustered. Though we cannot completely exclude the possibility that some 5′ NT is in clusters, the data imply that most 5′ NT molecules are randomly distributed across the apical surface of MDCK cells. These findings constrain current models for lipid rafts and the membrane organization of GPI-anchored proteins.


Sign in / Sign up

Export Citation Format

Share Document