Different Origins of Strain-Induced Chirality Inversion of Co2+-Triggered Supramolecular Peptide Polymers

2018 ◽  
Vol 30 (6) ◽  
pp. 2074-2083 ◽  
Author(s):  
Hyesong Park ◽  
Ka Young Kim ◽  
Sung Ho Jung ◽  
Yeonweon Choi ◽  
Hisako Sato ◽  
...  
Author(s):  
K. Izui ◽  
S. Furuno ◽  
H. Otsu ◽  
T. Nishida ◽  
H. Maeta

Anisotropy of damage productions in crystals due to high energy electron bombardment are caused from two different origins. One is an anisotropic displacement threshold energy, and the other is an anisotropic distribution of electron flux near the atomic rows in crystals due to the electron channeling effect. By the n-beam dynamical calculations for germanium and molybdenum we have shown that electron flux at the atomic positions are from ∽4 to ∽7 times larger than the mean incident flux for the principal zone axis directions of incident 1 MeV electron beams, and concluded that such a locally increased electron flux results in an enhanced damage production. The present paper reports the experimental evidence for the enhanced damage production due to the locally increased electron flux and also the results of measurements of the displacement threshold energies for the <100>,<110> and <111> directions in molybdenum crystals by using a high voltage electron microscope.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
K Kollewe ◽  
S Baloush ◽  
K Krampfl ◽  
H Bigalke ◽  
R Dengler ◽  
...  

2009 ◽  
Vol 35 (11) ◽  
pp. 2107-2115 ◽  
Author(s):  
Huai-Jun TANG ◽  
Gui-Hong YIN ◽  
Xian-Chun XIA ◽  
Jian-Jun FENG ◽  
Yan-Ying QU ◽  
...  

Author(s):  
Saleh Abdou ◽  
Hany A. Amer ◽  
Hayam Abdel-ghany ◽  
mohsen albahar

2020 ◽  
Vol 15 ◽  
Author(s):  
Jiahui Pan ◽  
Xizi Luo ◽  
Tong Shao ◽  
Chaoying Li ◽  
Tingting Zhao ◽  
...  

Background: Synechococcus sp. WH8102 is one of the most abundant photosynthetic organisms in many ocean regions. Objective: The aim of this study is to identify genomic islands (GIs) in Synechococcus sp. WH8102 with integrated methods. Methods: We have applied genomic barcode to identify the GIs in Synechococcus sp. WH8102, which could make genomic regions of different origins visually apparent. The gene expression data of the predicted GIs was analyzed through microarray data which was collected for functional analysis of the relevant genes. Results: Seven GIs were identified in Synechococcus sp. WH8102. Most of them are involved in cell surface modification, photosynthesis and drug resistance. In addition, our analysis also revealed the functions of these GIs, which could be used for in-depth study on the evolution of this strain. Conclusion: Genomic barcodes provide us with a comprehensive and intuitive view of the target genome. We can use it to understand the intrinsic characteristics of the whole genome and identify GIs or other similar elements.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5459
Author(s):  
Wei Deng ◽  
Eric R. Fossum

This work fits the measured in-pixel source-follower noise in a CMOS Quanta Image Sensor (QIS) prototype chip using physics-based 1/f noise models, rather than the widely-used fitting model for analog designers. This paper discusses the different origins of 1/f noise in QIS devices and includes correlated double sampling (CDS). The modelling results based on the Hooge mobility fluctuation, which uses one adjustable parameter, match the experimental measurements, including the variation in noise from room temperature to –70 °C. This work provides useful information for the implementation of QIS in scientific applications and suggests that even lower read noise is attainable by further cooling and may be applicable to other CMOS analog circuits and CMOS image sensors.


Author(s):  
Bernhard Hommel

AbstractCommonsense and theorizing about action control agree in assuming that human behavior is (mainly) driven by goals, but no mechanistic theory of what goals are, where they come from, and how they impact action selection is available. Here I develop such a theory that is based on the assumption that GOALs guide Intentional Actions THrough criteria (GOALIATH). The theory is intended to be minimalist and parsimonious with respect to its assumptions, as transparent and mechanistic as possible, and it is based on representational assumptions provided by the Theory of Event Coding (TEC). It holds that goal-directed behavior is guided by selection criteria that activate and create competition between event files that contain action-effect codes matching one or more of the criteria—a competition that eventually settles into a solution favoring the best-matching event file. The criteria are associated with various sources, including biological drives, acquired needs (e.g., of achievement, power, or affiliation), and short-term, sometimes arbitrary, instructed aims. Action selection is, thus, a compromise that tries to satisfy various criteria related to different driving forces, which are also likely to vary in strength over time. Hence, what looks like goal-directed action emerges from, and represents an attempt to satisfy multiple constraints with different origins, purposes, operational characteristics, and timescales—which among other things does not guarantee a high degree of coherence or rationality of the eventual outcome. GOALIATH calls for a radical break with conventional theorizing about the control of goal-directed behavior, as it among other things questions existing cognitive-control theories and dual-route models of action control.


2021 ◽  
Vol 6 (12) ◽  
pp. 4531-4541
Author(s):  
Ziyi Lu ◽  
Yueming Wu ◽  
Zihao Cong ◽  
Yuxin Qian ◽  
Xue Wu ◽  
...  

Author(s):  
Ronisha Ramamurthy ◽  
Chetan H. Mehta ◽  
Usha Y. Nayak

Abstract Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document