Villermaux–Dushman Test of Micromixing Characterization Revisited: Kinetic Effects of Acid Choice and Ionic Strength

Author(s):  
Pierrette Guichardon ◽  
Carlos Baqueiro ◽  
Nelson Ibaseta
1987 ◽  
Author(s):  
J D Shore ◽  
D E Day ◽  
S T Olson

Previous work in our laboratory showed that Zn2+ enhanced the rate of kallikrein generation by dextran sulfate (DxSO4) in dialyzed normal plasma, but not in Fitzgerald or Hageman prismas. This could be partially explained by a marked effect of Zn2+ on factor XII autoactivation, and our present work involves zinc effects on other reactions of contact activation. At physiological ionic strength (0.15 μ), the kcat/Km for Xlla activation of prekallikrein (PK) was 0.62 μM™1 s™1 which was increased to 4.35 μM™1 s™1 by the presence of 25μg/ml DxSO4. High molecular weight kininogen (HMK) at 40 nM further increased this to 10.8 μM™1 s™1 , and 5 ¼M Zn2+ had no effect. To determine whether these cofactors promote a surface-dependent activation of PK by XIIa under conditions which weaken the protein-surface interactions, the kinetics were examined at 0.3μ. At this ionic strength, kcat/Km was 0.18 μM™1 s™1 and was unchanged by 25μg/ml DxSO4. This was increased to .805 μM™1 s™1 by 150 nM HMK and further increased 10-fold to 8.35 μM™1 s™1 by 10 μM™1 Zn2+ . Qualitative results were obtained at 0.3 μ for the other reciprocal reaction, XII activation by kallikrein (K). To observe XII activation within 2 hours, both 10 μM Zn2+ and 25 μM HMK were essential, indicating that these cofactors have a very large enhancing effect on the kinetics of this reaction. Chromatography of HMWK on DxSO4-agarose ^ljiowed elution of the protein at 0.42 M NaCl in the absence of Zn2+ ,but at 0.88M in its presence, providing evidence that Zn+ markedly increases the affinity of HMK for DxSO4. Our results are consistent with the increased activation rates observed in the presence of Zn2+ and HMK due to enhanced binding affinity of the reacting proteins to surfaces. This is likely to be essential for proper function of the contact system in blood, where many other proteins compete for surface. Supported by USPHS grant HL-25670


1961 ◽  
Vol 44 (6) ◽  
pp. 1103-1120 ◽  
Author(s):  
M. Castañeda-Agulló ◽  
Luz M. del Castillo ◽  
J. R. Whitaker ◽  
A. L. Tappel

The kinetic effects resulting from changes in the medium ionic strength on reactions involving trypsin or α-chymotrypsin are different. The reaction rate increases continuously as the ionic strength increases with α-chymotrypsin. With trypsin, the rate increases at low ionic strengths but as the ionic strength further increases a gradual inhibitory effect is observed. The effects produced by different salts of various valence types (from uni-univalent to uni-trivalent or tri-univalent) are essentially the same, and they are a function of the square root of the ionic strength. The quantitative differences among the various salts may be accounted for on the basis of individual properties of the ions, such as the size of the hydrated ion, "association," etc. The effects of salts on the enzymic reactions described herein are amenable to the same electrostatic treatment applicable to non-enzymatic reactions. By applying Brönsted's basic kinetic concepts and the Debye-Hückel law of electrolyte activity, it appears that the salt effects are mainly due to changes in the dissociation of ionizable groups. This appears to be a general method for analyzing the effect of inorganic ions on enzymic reactions.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 502 ◽  
Author(s):  
Felix Brandt ◽  
Martina Klinkenberg ◽  
Jenna Poonoosamy ◽  
Juliane Weber ◽  
Dirk Bosbach

Recrystallization and solid-solution formation with barite is considered as relevant retention mechanism for 226Ra in long-term scenarios of nuclear waste management. Here, we studied the effect of ionic strength and the presence of Sr in solution upon the Ra-uptake kinetics and final Ra concentrations in solution by recrystallizing barite in solution with varying Sr and NaCl concentration and temperature for up to 1000 days. Final Ra-concentrations were interpreted based on thermodynamic modelling. Our results indicate a slight decrease of the retention potential of barite for Ra but little effect on the uptake kinetics due to the increase of ionic strength from. 0.1 mol/kg to 1.0 mol/kg of NaCl. The final concentrations at solid/liquid ratio of 0.5 g/kg are well described based on available thermodynamic models whereas at 5 g/kg additional Ra uptake probably due to kinetic effects was observed. On the contrary, the presence of Sr in solution can have a significant inhibiting kinetic effect on the uptake kinetics and lower the final Ra-uptake. In some cases, with low solid/liquid ratio or at ambient conditions, Sr completely inhibits barite recrystallization. In all other cases, Ra, Ba and Sr were taken up as thermodynamically predicted at the end of the experiments.


Author(s):  
F. Thoma ◽  
TH. Koller

Under a variety of electron microscope specimen preparation techniques different forms of chromatin appearance can be distinguished: beads-on-a-string, a 100 Å nucleofilament, a 250 Å fiber and a compact 300 to 500 Å fiber.Using a standardized specimen preparation technique we wanted to find out whether there is any relation between these different forms of chromatin or not. We show that with increasing ionic strength a chromatin fiber consisting of a row of nucleo- somes progressively folds up into a solenoid-like structure with a diameter of about 300 Å.For the preparation of chromatin for electron microscopy the avoidance of stretching artifacts during adsorption to the carbon supports is of utmost importance. The samples are fixed with 0.1% glutaraldehyde at 4°C for at least 12 hrs. The material was usually examined between 24 and 48 hrs after the onset of fixation.


Author(s):  
J.S. Wall ◽  
V. Maridiyan ◽  
S. Tumminia ◽  
J. Hairifeld ◽  
M. Boublik

The high contrast in the dark-field mode of dedicated STEM, specimen deposition by the wet film technique and low radiation dose (1 e/Å2) at -160°C make it possible to obtain high resolution images of unstained freeze-dried macromolecules with minimal structural distortion. Since the image intensity is directly related to the local projected mass of the specimen it became feasible to determine the molecular mass and mass distribution within individual macromolecules and from these data to calculate the linear density (M/L) and the radii of gyration.2 This parameter (RQ), reflecting the three-dimensional structure of the macromolecular particles in solution, has been applied to monitor the conformational transitions in E. coli 16S and 23S ribosomal RNAs in solutions of various ionic strength.In spite of the differences in mass (550 kD and 1050 kD, respectively), both 16S and 23S RNA appear equally sensitive to changes in buffer conditions. In deionized water or conditions of extremely low ionic strength both appear as filamentous structures (Fig. la and 2a, respectively) possessing a major backbone with protruding branches which are more frequent and more complex in 23S RNA (Fig. 2a).


Author(s):  
S. Trachtenberg ◽  
D. J. DeRosier

The bacterial cell is propelled through the liquid environment by means of one or more rotating flagella. The bacterial flagellum is composed of a basal body (rotary motor), hook (universal coupler), and filament (propellor). The filament is a rigid helical assembly of only one protein species — flagellin. The filament can adopt different morphologies and change, reversibly, its helical parameters (pitch and hand) as a function of mechanical stress and chemical changes (pH, ionic strength) in the environment.


1988 ◽  
Vol 85 ◽  
pp. 523-527
Author(s):  
M.M. Zuleika ◽  
Palhares SILVA ◽  
Ernesto Rafael GONZALEZ ◽  
Luis Alberto AVACA ◽  
Artur de Jesus MOTHEO

2003 ◽  
Vol 112 ◽  
pp. 133-137 ◽  
Author(s):  
A. Fraile-Rodriguez ◽  
P. P. Rodriguez ◽  
R. B. Pérez-Saez ◽  
A. Lopez-Echarri ◽  
J. San Juan

1987 ◽  
Vol 58 (04) ◽  
pp. 1064-1067 ◽  
Author(s):  
K Kodama ◽  
B Pasche ◽  
P Olsson ◽  
J Swedenborg ◽  
L Adolfsson ◽  
...  

SummaryThe mode of F Xa inhibition was investigated on a thromboresistant surface with end-point attached partially depoly-merized heparin of an approximate molecular weight of 8000. Affinity chromatography revealed that one fourth of the heparin used in surface coating had high affinity for antithrombin III (AT). The heparin surface adsorbed AT from both human plasma and solutions of purified AT. By increasing the ionic strength in the AT solution the existence of high and low affinity sites could be shown. The uptake of AT was measured and the density of available high and low affinity sites was found to be in the range of 5 HTid 11 pic.omoles/cmf, respectively Thus the estimated density of biologically active high and low ailmity heparm respectively would be 40 and 90 ng/cm2 The heparin coating did not take up or exert F Xa inhibition by itself. With AT adsorbed on both high and low affinity heparin the surface had the capacity to inhibit several consecutive aliquots of F Xa exposed to the surface. When mainly high affinity sites were saturated with AT the inhibition capacity was considerably lower. Tt was demonstrated that the density of AT on both high and low affinity heparin determines the F Xa inhibition capacity whereas the amount of AT on high affinity sites limits the rate of the reaction. This implies that during the inhibition of F Xa there is a continuous surface-diffusion of AT from sites of a lower class to the high affinity sites where the F Xa/AT complex is formed and leaves the surface. The ability of the immobilized heparin to catalyze inhibition of F Xa is likely to be an important component for the thromboresistant properties of a heparin coating with non-compromized AT binding sequences.


1976 ◽  
Vol 35 (01) ◽  
pp. 186-190 ◽  
Author(s):  
Eugen A. Beck ◽  
Peter Bachmann ◽  
Peter Barbier ◽  
Miha Furlan

SummaryAccording to some authors factor VIII procoagulant activity may be dissociable from carrier protein (MW~ 2 × 106) by agarose gel filtration, e.g. at high ionic strength. We were able to reproduce this phenomenon. However, addition of protease inhibitor (Trasylol) prevented the appearance of low molecular weight peak of factor VIII procoagulant activity both at high ionic strength and elevated temperature (37°C). We conclude from our results that procoagulant activity and carrier protein (von Willebrand factor, factor VIII antigen) are closely associated functional sites of native factor VIII macro molecule. Consequently, proteolytic degradation should be avoided in functional and structural studies on factor VIII and especially in preparing factor VIII concentrate for therapeutic use.


Sign in / Sign up

Export Citation Format

Share Document