Single-Step Room-Temperature in Situ Syntheses of Sulfonic Acid Functionalized SBA-16 with Ordered Large Pores: Potential Applications in Dye Adsorption and Heterogeneous Catalysis

2017 ◽  
Vol 56 (11) ◽  
pp. 2943-2957 ◽  
Author(s):  
Haribandhu Chaudhuri ◽  
Subhajit Dash ◽  
Ashis Sarkar
2017 ◽  
Vol 13 ◽  
pp. 2023-2027 ◽  
Author(s):  
Hao Wang ◽  
Cui Chen ◽  
Weibing Liu ◽  
Zhibo Zhu

We developed a direct vicinal difunctionalization of alkenes with iodine and TBHP at room temperature. This iodination and peroxidation in a one-pot synthesis produces 1-(tert-butylperoxy)-2-iodoethanes, which are inaccessible through conventional synthetic methods. This method generates multiple radical intermediates in situ and has excellent regioselectivity, a broad substrate scope and mild conditions. The iodine and peroxide groups of 1-(tert-butylperoxy)-2-iodoethanes have several potential applications and allow further chemical modifications, enabling the preparation of synthetically valuable molecules.


2017 ◽  
Vol 2 (5) ◽  
pp. 1835-1842 ◽  
Author(s):  
Haribandhu Chaudhuri ◽  
Subhajit Dash ◽  
Radha Gupta ◽  
Devendra Deo Pathak ◽  
Ashis Sarkar

2021 ◽  
Author(s):  
Zhiwen Li ◽  
Xin He ◽  
Changling Zhang ◽  
Sijia Zhang ◽  
Yating Jia ◽  
...  

Abstract Searching for superconductivity with Tc near room temperature is of great interest both for fundamental science & potential applications. Here we report the experimental discovery of superconductivity with maximum critical temperature(Tc) above 210 K in calcium superhydrides, the third type hydride experimentally showing superconductivity above 200K in addition to sulfur hydride & rare earth hydride system. The materials are synthesized at the synergetic conditions of 160~190 GPa and ~2000K using diamond anvil cell combined with in-situ laser heating technique. The superconductivity was studied through in situ high pressure resistance measurements in applied magnetic field for the sample quenched from high temperature while maintained at the synthesized pressure. The upper critical field was estimated to be ~268T while the GL coherent length is ~11 Å. The in situ x ray diffractions with synchrotron suggest that the synthesized calcium hydrides are primarily composed of CaH6 while there also exist other calcium hydrids with different hydrogen.


2014 ◽  
Vol 904 ◽  
pp. 159-163 ◽  
Author(s):  
Jia Ping Lao ◽  
Chao Yang ◽  
Hao Dao Mo ◽  
Yu Ping Li ◽  
Li Min Zang ◽  
...  

Functional floating bead (F-FB), prepared by anchoring the organic sulfonic acid on the surface of the blackberry-like structural FB, was used as both the inorganic substrate and the in situ dopant for the in situ chemical oxidative polymerization of pyrrole to obtain the plypyrrole/functional floating bead (PPy/F-FB) nanocomposite material. The composites possess high electrical conductivity at room temperature. Thermogravimetric analysis shows that the thermal stability of PPy/F-FB composites was enhanced and these can be attributed to the retardation effect of sulfonic acid-functionalized FB as barriers for the degradation of PPy. The morphology of PPy/FB composites showed the well-defined blackberry-like morphology.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Giacomo Boldrini ◽  
Caterina Sgarlata ◽  
Isabella Lancellotti ◽  
Luisa Barbieri ◽  
Marco Giorgetti ◽  
...  

AbstractThe treatment of tannery wastewaters is a complex task due to the complexity of the waste: a mixture of several pollutants, both anionic and cationic as well as organic macromolecules which are very hard to treat for disposal all together. Geopolymers are a class of inorganic binders obtained by alkali activation of aluminosilicate powders at room temperature. Such activation process leads to a cement like matrix that drastically decreases mobility of several components via entrapment. This process taking place in the matrix can be hypothesized to be the in-situ formation of zeolite structures. In this work we use a metakaolin based geopolymer to tackle the problem directly in an actual industrial environment. To obtain a geopolymer, the metakaolin was mixed with 10 wt% of wastewater added with sodium hydroxide and sodium silicate as activating solutions. This process allowed a rapid consolidation at room temperature, the average compressive strength was between 14 and 43 MPa. Leaching tests performed at different aging times confirm a high immobilization efficiency close to 100%. In particular, only the 0.008 and 2.31% of Chromium and Chlorides respectively are released in the leaching test after 7 months of aging.


2017 ◽  
Vol 16 (03) ◽  
pp. 1650037 ◽  
Author(s):  
Nishigandh S. Pande ◽  
Dipika Jaspal ◽  
Jalindar Ambekar

Poly (N-ethyl aniline)/Ag organic–inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20–80[Formula: see text] (2[Formula: see text]) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789[Formula: see text]cm[Formula: see text], 1595[Formula: see text]cm[Formula: see text], 667[Formula: see text]cm[Formula: see text] and 501[Formula: see text]cm[Formula: see text] in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Sign in / Sign up

Export Citation Format

Share Document