Incorporation of Exogenous Fatty Acids Enhances the Salt Tolerance of Food Yeast Zygosaccharomyces rouxii

2021 ◽  
Vol 69 (35) ◽  
pp. 10301-10310
Author(s):  
Dingkang Wang ◽  
Hong Chen ◽  
Huan Yang ◽  
Shangjie Yao ◽  
Chongde Wu
2018 ◽  
Vol 19 (8) ◽  
pp. 2433 ◽  
Author(s):  
Mohamed El-Esawi ◽  
Abdullah Al-Ghamdi ◽  
Hayssam Ali ◽  
Aisha Alayafi ◽  
Jacques Witczak ◽  
...  

Pisum sativum L. (field pea) is a crop of a high nutritional value and seed oil content. The characterization of pea germplasm is important to improve yield and quality. This study aimed at using fatty acid profiling and amplified fragment length polymorphism (AFLP) markers to evaluate the variation and relationships of 25 accessions of French pea. It also aimed to conduct a marker-trait associations analysis using the crude oil content as the target trait for this analysis, and to investigate whether 5-aminolevulinic acid (ALA) could enhance salt tolerance in the pea germplasm. The percentage of crude oil of the 25 pea genotypes varied from 2.6 to 3.5%, with a mean of 3.04%. Major fatty acids in all of the accessions were linoleic acid. Moreover, the 12 AFLP markers used were polymorphic. The cluster analysis based on fatty acids data or AFLP data divided the 25 pea germplasm into two main clusters. The gene diversity of the AFLP markers varied from 0.21 to 0.58, with a mean of 0.41. Polymorphic information content (PIC) of pea germplasm varied from 0.184 to 0.416 with a mean of 0.321, and their expected heterozygosity (He) varied from 0.212 to 0.477 with a mean of 0.362. The AFLP results revealed that the Nain Ordinaire cultivar has the highest level of genetic variability, whereas Elatius 3 has the lowest level. Three AFLP markers (E-AAC/M-CAA, E-AAC/M-CAC, and E-ACA/M-CAG) were significantly associated with the crude oil content trait. The response of the Nain Ordinaire and Elatius 3 cultivars to high salinity stress was studied. High salinity (150 mM NaCl) slightly reduced the photosynthetic pigments contents in Nain Ordinaire leaves at a non-significant level, however, the pigments contents in the Elatius 3 leaves were significantly reduced by high salinity. Antioxidant enzymes (APX—ascorbate peroxidase; CAT—catalase; and POD—peroxidase) activities were significantly induced in the Nain Ordinaire cultivar, but non-significantly induced in Elatius 3 by high salinity. Priming the salt-stressed Nain Ordinaire and Elatius 3 plants with ALA significantly enhanced the pigments biosynthesis, antioxidant enzymes activities, and stress-related genes expression, as compared to the plants stressed with salt alone. In conclusion, this study is amongst the first investigations that conducted marker-trait associations in pea, and revealed a sort of correlation between the diversity level and salt tolerance.


2017 ◽  
Vol 39 (9) ◽  
Author(s):  
Shanshan Liu ◽  
Wenqing Wang ◽  
Meng Li ◽  
Shubo Wan ◽  
Na Sui

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2218
Author(s):  
Irene Sánchez-Gavilán ◽  
Esteban Ramírez Chueca ◽  
Vicenta de la Fuente García

(1) Background: this study describes bioactive compounds in the following halophytes: Sarcocornia (S. alpini, S. pruinosa, and S. perennis) and Arthrocnemum (A. macrostachyum). The material comes from: coastal marshes in Tinto River, Guadiana River, and some interior provinces from the Iberian Peninsula. (2) Methods: the techniques used were Folin–Ciocalteu, GC-MS, and ESI-MS/MS. (3) Results: Five phenolic acids were found in Sarcocornia: trans-cinnamic, salicylic, veratric, coumaric, and caffeic acids. In addition, in Arthronemum, ferulic acid was also detected. The obtained flavonoids were cyanidin-3-O-arabinoside, luteolin-7-glucoside, dihydroquercetin, and p-coumaroyl-glucoside. They also presented fatty acids, such as palmitic, linoleic, and oleic acids in Sarcocornia, while palmitic, linolenic, and stearic acids were the main fatty acids in A. macrostachyum. (4) Conclusions: the high diversity of the compounds identified confirms the relation between nutritional interest and salt tolerance in halophytes.


2019 ◽  
Vol 82 ◽  
pp. 59-67 ◽  
Author(s):  
Dingkang Wang ◽  
Zhiqiang Hao ◽  
Jinsong Zhao ◽  
Yao Jin ◽  
Jun Huang ◽  
...  

2010 ◽  
Vol 48 (3) ◽  
pp. 400-408 ◽  
Author(s):  
Y. L. Sun ◽  
F. Li ◽  
N. Su ◽  
X. L. Sun ◽  
S. J. Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document