Dammarane-Type Saponins from Gynostemma pentaphyllum Prevent Hypoxia-Induced Neural Injury through Activation of ERK, Akt, and CREB Pathways

2019 ◽  
Vol 68 (1) ◽  
pp. 193-205 ◽  
Author(s):  
Jun Wang ◽  
Ming Zhao ◽  
Xiang Cheng ◽  
Ying Han ◽  
Tong Zhao ◽  
...  
2019 ◽  
Vol 23 (04) ◽  
pp. 405-418 ◽  
Author(s):  
James F. Griffith ◽  
Radhesh Krishna Lalam

AbstractWhen it comes to examining the brachial plexus, ultrasound (US) and magnetic resonance imaging (MRI) are complementary investigations. US is well placed for screening most extraforaminal pathologies, whereas MRI is more sensitive and accurate for specific clinical indications. For example, MRI is probably the preferred technique for assessment of trauma because it enables a thorough evaluation of both the intraspinal and extraspinal elements, although US can depict extraforaminal neural injury with a high level of accuracy. Conversely, US is probably the preferred technique for examination of neurologic amyotrophy because a more extensive involvement beyond the brachial plexus is the norm, although MRI is more sensitive than US for evaluating muscle denervation associated with this entity. With this synergy in mind, this review highlights the tips for examining the brachial plexus with US and MRI.


2007 ◽  
Vol 85 (4) ◽  
pp. 766-777 ◽  
Author(s):  
Michael Gray ◽  
Winnie Palispis ◽  
Phillip G. Popovich ◽  
Nico van Rooijen ◽  
Ranjan Gupta

2021 ◽  
Vol 11 (4) ◽  
pp. 462
Author(s):  
Charles B. Delahunt ◽  
Pedro D. Maia ◽  
J. Nathan Kutz

Most organisms suffer neuronal damage throughout their lives, which can impair performance of core behaviors. Their neural circuits need to maintain function despite injury, which in particular requires preserving key system outputs. In this work, we explore whether and how certain structural and functional neuronal network motifs act as injury mitigation mechanisms. Specifically, we examine how (i) Hebbian learning, (ii) high levels of noise, and (iii) parallel inhibitory and excitatory connections contribute to the robustness of the olfactory system in the Manduca sexta moth. We simulate injuries on a detailed computational model of the moth olfactory network calibrated to data. The injuries are modeled on focal axonal swellings, a ubiquitous form of axonal pathology observed in traumatic brain injuries and other brain disorders. Axonal swellings effectively compromise spike train propagation along the axon, reducing the effective neural firing rate delivered to downstream neurons. All three of the network motifs examined significantly mitigate the effects of injury on readout neurons, either by reducing injury’s impact on readout neuron responses or by restoring these responses to pre-injury levels. These motifs may thus be partially explained by their value as adaptive mechanisms to minimize the functional effects of neural injury. More generally, robustness to injury is a vital design principle to consider when analyzing neural systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanshan Liu ◽  
Qing Liu ◽  
Yanjie Ju ◽  
Lei Liu

AbstractThis study aimed to evaluate the role of miR-383 in the regulation of Wnt-2 signaling in the rat model of chronic stress. The male SD rats with depressive-like behaviors were stimulated with chronic unpredictable mild stress (CUMS) including ice-water swimming for 5 min, food deprivation for 24 h, water deprivation for 24 h, stimulating tail for 1 min, turning night into day, shaking for 15 min (once/s), and wrap restraint (5 min/time) every day for 21 days. The expression levels of miRNAs were detected by qRT-PCR, and the expression levels of Wnt2, depression-impacted proteins (GFAP, BDNF, CREB), brain neurotransmitters (5-HT, NE, DA) and apoptosis-related proteins (Bax and Bcl-2) were evaluated by qRT-PCR and western blot. Bioinformatic analysis and luciferase reporter assay were performed to determine the relationship between miR-383 and Wnt2. Ethological analysis was evaluated by sugar preference test, refuge island test and open field tests. Rescue experiments including knockdown of miR-383, overexpression and silencing of Wnt2 were performed to determine the role of miR-383. High expression levels of miR-383 were observed in the hippocampus of rats submitted to CUMS model. Downregulation of miR-383 significantly inhibited the apoptosis and inflammatory response of hippocampal neurons, and increased the expression levels of GFAP, BDNF and CREB which were impacted in depression, as well as neurotransmitters, then attenuated neural injury in rats induced by CUMS. Furthermore, Wnt family member 2 (Wnt2) was identified as a target of miR-383, and silencing of Wnt2 obviously attenuated the protective effect of miR-383 inhibitor on the apoptosis and inflammatory response in hippocampal neurons, as well as neural injury in CUMS-induced rats. Downregulation of miR-383 ameliorated the behavioral and neurochemical changes induced by chronic stress in rats by directly targeting Wnt2, indicating that the miR-383/Wnt2 axis might be a potential therapeutic target for MDD.


2018 ◽  
Vol 10 (1) ◽  
pp. 34-39
Author(s):  
Ting Wang ◽  
Xiang-rong Tian ◽  
Xiao-yu Wu ◽  
Zhun Luo ◽  
Gui Li ◽  
...  

2015 ◽  
Vol 25 (16) ◽  
pp. 3095-3099 ◽  
Author(s):  
Xiao-Shu Zhang ◽  
Jia-Qing Cao ◽  
Chen Zhao ◽  
Xu-de Wang ◽  
Xiao-jun Wu ◽  
...  

1985 ◽  
Vol 33 (12) ◽  
pp. 5568-5571 ◽  
Author(s):  
JUNICHI TAKAGI ◽  
TERUAKI IMADA ◽  
TAKASHI KIKUCHI ◽  
YUJI SAITO ◽  
YUJI INADA

Sign in / Sign up

Export Citation Format

Share Document