Role of Chain Length and Degree of Unsaturation of Fatty Acids in the Physicochemical and Pharmacological Behavior of Drug–Fatty Acid Conjugates in Diabetes

Author(s):  
Arihant Kumar Singh ◽  
Kishan S. Italiya ◽  
Saibhargav Narisepalli ◽  
Deepak Chitkara ◽  
Anupama Mittal
1994 ◽  
Vol 266 (4) ◽  
pp. E635-E639 ◽  
Author(s):  
E. C. Opara ◽  
M. Garfinkel ◽  
V. S. Hubbard ◽  
W. M. Burch ◽  
O. E. Akwari

The purpose of the present study was to examine the role played by structural differences among fatty acids in their effect on insulin secretion by isolated perifused murine islets. Insulin secretion measured by radioimmunoassay was assessed either as total insulin output (ng.6 islets-1.20 min-1) or as percent of basal insulin secretion. Raising the glucose concentration from a basal 5.5 to 27.7 mM caused an increase of insulin output from 6.69 +/- 1.59 to 19.92 +/- 4.99 ng.6 islets-1.20 min-1 (P < 0.05) in control (untreated) islets. However, after 20-min exposure of islets to 5 mM 16:0 or 18:2, the effect of 27.7 mM glucose was enhanced or diminished, respectively. Basal insulin output (100% basal) changed to 44 +/- 10% basal (P < 0.005) with the addition of 5 mM 4:0 but was not altered when 4:0 was replaced by 6:0. Insulin output increased modestly with 5 mM 8:0 but significantly (P < 0.05) with 10:0 until a maximal of 280 +/- 24% basal with 12:0 (P < 0.01), then fell to 110 +/- 18 and 93 +/- 15% basal (P < 0.05) with 14:0 and 16:0, respectively. The addition of 5 mM 18:0 inhibited insulin secretion to 30 +/- 10% of basal (P < 0.003), and this effect was not caused by fatty acid interference with insulin assay.(ABSTRACT TRUNCATED AT 250 WORDS)


1956 ◽  
Vol 34 (1) ◽  
pp. 861-868 ◽  
Author(s):  
J. D. Wood ◽  
B. B. Migicovsky

Fatty acids inhibit cholesterol synthesis by rat liver homogenates. Inhibition occurs with acids containing either an even or an odd number of carbon atoms in the chain, and with saturated and unsaturated acids, the inhibition increasing with the degree of unsaturation of the acid. In the case of acids with an even number of carbon atoms the inhibition increases with chain length to a maximum at 12 carbons after which a rapid decrease occurs. The presence of fatty acid during cholesterol synthesis increases the acetate incorporated into fatty acids to a slight extent. This increase is small compared with the decrease in the amount incorporated into cholesterol. A possible mechanism for the inhibition is discussed.


1956 ◽  
Vol 34 (5) ◽  
pp. 861-868 ◽  
Author(s):  
J. D. Wood ◽  
B. B. Migicovsky

Fatty acids inhibit cholesterol synthesis by rat liver homogenates. Inhibition occurs with acids containing either an even or an odd number of carbon atoms in the chain, and with saturated and unsaturated acids, the inhibition increasing with the degree of unsaturation of the acid. In the case of acids with an even number of carbon atoms the inhibition increases with chain length to a maximum at 12 carbons after which a rapid decrease occurs. The presence of fatty acid during cholesterol synthesis increases the acetate incorporated into fatty acids to a slight extent. This increase is small compared with the decrease in the amount incorporated into cholesterol. A possible mechanism for the inhibition is discussed.


1963 ◽  
Vol 204 (5) ◽  
pp. 821-824 ◽  
Author(s):  
Alvin M. Gelb ◽  
Jacques I. Kessler

The effect of chain length and degree of unsaturation of fatty acids (FA) on in vitro esterification by slices of hamster small intestine was observed in a medium containing C14-labeled FA. After incubation, lipids were extracted and separated and the radioactivity in the esterified lipids was measured. Comparative experiments, in which results were expressed as per cent of substrate esterified per 100 mg tissue, indicate that for saturated FA, maximal esterification occurred with myristic acid, 14 carbons. As chain length was either increased or decreased, percentage esterification decreased. FA with 8 carbons or less were only minimally esterified. Among 18-carbon FA, two unsaturated bonds significantly decreased percentage esterification, although one unsaturated bond did not. These results suggest that, at least in vitro, the small bowel esterifies FA at varying rates depending upon chain length and degree of unsaturation. These differences are in the same direction as differences in absorption and partition of FA in vivo previously reported by others.


LWT ◽  
2021 ◽  
pp. 110867
Author(s):  
Min Hyeock Lee ◽  
Ha Ram Kim ◽  
Woo Su Lim ◽  
Min-Cheol Kang ◽  
Hee-Don Choi ◽  
...  

2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.


2009 ◽  
Vol 4 (10) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Christel Brunschwig ◽  
François Xavier Collard ◽  
Jean-Pierre Bianchini ◽  
Phila Raharivelomanana

In order to establish a chemical fingerprint of vanilla diversity, thirty samples of V. planifolia J. W. Moore and V. tahitensis G. Jackson cured beans from seven producing countries were examined for their aroma and fatty acid contents. Both fatty acid and aroma compositions were found to vary between vanilla species and origins. Vanillin was found in higher amounts in V. planifolia (1.7-3.6% of dry matter) than in V. tahitensis (1.0-2.0%), and anisyl compounds were found in lower amounts in V. planifolia (0.05%) than in V. tahitensis (1.4%-2.1%). Ten common and long chain monounsaturated fatty acids (LCFA) were identified and were found to be characteristic of the vanilla origin. LCFA derived from secondary metabolites have discriminating compositions as they reach 5.9% and 15.8% of total fatty acids, respectively in V. tahitensis and V. planifolia. This study highlights the role of the curing method as vanilla cured beans of two different species cultivated in the same country were found to have quite similar fatty acid compositions.


Langmuir ◽  
2003 ◽  
Vol 19 (26) ◽  
pp. 10808-10815 ◽  
Author(s):  
Vincent Dupres ◽  
Sophie Cantin ◽  
Fewzi Benhabib ◽  
Françoise Perrot ◽  
Philippe Fontaine ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document