scholarly journals FSMP-15. EVALUATING THE ROLE OF LONG-CHAIN FATTY ACID METABOLISM IN PROMOTING GLIOBLASTOMA GROWTH

2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.

1991 ◽  
Vol 10 (3) ◽  
pp. 325-340 ◽  
Author(s):  
D. R. Webb ◽  
R. A. Sanders

Caprenin (CAP) is a triglyceride that primarily contains caprylic (C8:0), capric (C10:0), and behenic (C22:0) acids. This study was undertaken to determine whether or not CAP is qualitatively digested, absorbed, and rearranged like other dietary fats and oils that contain these medium-chain and very long-chain fatty acids. In vitro results showed that neat CAP, coconut oil (CO) and peanut oil (PO) were hydrolyzed by porcine pancreatic lipase. All of the neat triglycerides also were digested in vivo by both male and female rats. This was shown by the recovery of significantly more extractable lymphatic fat than with fat-free control animals and by the recovery of orally administered triglyceride-derived fatty acids in lymph triglycerides. However, substantially more PO (74%) and CO (51%) were recovered in lymph relative to CAP (10%). These quantitative differences are consistent with the fatty acid composition of each triglyceride and primary routes of fatty acid uptake. The 24-h lymphatic recovery of CAP-derived C8:0, C10:0, and C22:0 averaged 3.9%, 17.8%, and 11.2%, respectively, for male and female rats. The C8:0 and C10:0 results approximated those obtained with CO (2.0% and 16.3%, respectively). In contrast, the 24-h absorbability of C22:0 in CAP was significantly less than that seen in PO (55.4%). Finally, there was no evidence of significant rearrangement of the positions of fatty acids on glycerol during digestion and absorption. Those fatty acids recovered in lymphatic fat tended to occupy the same glyceride positions that they did in the neat administered oils. However, the lymph fats recovered from all animals dosed with fat emulsions were enriched with endogenous lymph fatty acids. It is concluded that CAP is qualitatively digested, absorbed, and processed like any dietary fat or oil that contains medium-chain and very long-chain fatty acids.


1998 ◽  
Vol 64 (10) ◽  
pp. 3784-3790 ◽  
Author(s):  
Silke Schneider ◽  
Marcel G. Wubbolts ◽  
Dominique Sanglard ◽  
Bernard Witholt

ABSTRACT The application of whole cells containing cytochrome P-450BM-3 monooxygenase [EC 1.14.14.1 ] for the bioconversion of long-chain saturated fatty acids to ω-1, ω-2, and ω-3 hydroxy fatty acids was investigated. We utilized pentadecanoic acid and studied its conversion to a mixture of 12-, 13-, and 14-hydroxypentadecanoic acids by this monooxygenase. For this purpose,Escherichia coli recombinants containing plasmid pCYP102 producing the fatty acid monooxygenase cytochrome P-450BM-3were used. To overcome inefficient uptake of pentadecanoic acid by intact E. coli cells, we made use of a cloned fatty acid uptake system from Pseudomonas oleovorans which, in contrast to the common FadL fatty acid uptake system of E. coli, does not require coupling by FadD (acyl-coenzyme A synthetase) of the imported fatty acid to coenzyme A. This system fromP. oleovorans is encoded by a gene carried by plasmid pGEc47, which has been shown to effect facilitated uptake of oleic acid in E. coli W3110 (M. Nieboer, Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1996). By using a double recombinant of E. coli K27, which is a fadDmutant and therefore unable to consume substrates or products via the β-oxidation cycle, a twofold increase in productivity was achieved. Applying cytochrome P-450BM-3 monooxygenase as a biocatalyst in whole cells does not require the exogenous addition of the costly cofactor NADPH. In combination with the coenzyme A-independent fatty acid uptake system from P. oleovorans, cytochrome P-450BM-3 recombinants appear to be useful alternatives to the enzymatic approach for the bioconversion of long-chain fatty acids to subterminal hydroxylated fatty acids.


1998 ◽  
Vol 53 (11-12) ◽  
pp. 995-1003 ◽  

Abstract Herbicidal chloroacetamides cause a very sensitive inhibition of fatty acid incorporation into an insoluble cell wall fraction of Scenedesmus acutus. The molecular basis was investigated in more detail. After incubation of the algae with [14C]oleic acid and saponification, the remaining pellet was solubilized and fractionated consecutively with chloroform / methanol, phosphate buffer, amylase, pronase, and finally with dioxane/HCl. By acid hydrolysis in dioxane a part of the cell wall residue was solubilized showing inhibition of exogenously applied oleic acid and other labelled precursors such as stearic acid, palmitic acid, and acetate. After extraction of this dioxane-soluble subfraction with hexane, HPLC could separate labelled metabolites less polar than oleic acid. T heir formation was completely inhibited by chloroacetam ides, e.g. 1 μᴍ metazachlor. This effect was also observed with the herbicidally active 5-enantiomer of metolachlor while the inactive R-enantiomer had no influence. These strongly inhibited metabolites could be characterized by radio-HPLC /MS as very long chain fatty acids (VLCFAs) with a carbon chain between 20 and 26. Incubating am etazachlor-resistant cell line of S. acutus (Mz-1) with [14C]oleic acid, V LCFA s could not be detected in the dioxane/ HCl-subfraction. Furthermore, comparing the presence of endogenous fatty acids in wildtype and mutant Mz-1 the VLCFA content of the mutant is very low, while the content of long chain fatty acids (C16 -18) is increased, particularly oleic acid. Obviously, the phytotoxicity of chloroacetam ides in S. acutus is due to inhibition of VLCFA synthesis. The resistance of the mutant to metazachlor has a bearing on the higher amount of long chain fatty acids replacing the missing VLCFAs in essential membranes or cell wall components.


2011 ◽  
Vol 287 (14) ◽  
pp. 11469-11480 ◽  
Author(s):  
Richard Harkewicz ◽  
Hongjun Du ◽  
Zongzhong Tong ◽  
Hisham Alkuraya ◽  
Matthew Bedell ◽  
...  

Placenta ◽  
2009 ◽  
Vol 30 (12) ◽  
pp. 1037-1044 ◽  
Author(s):  
G.M. Johnsen ◽  
M.S. Weedon-Fekjær ◽  
K.A.R. Tobin ◽  
A.C. Staff ◽  
A.K. Duttaroy

1975 ◽  
Vol 150 (3) ◽  
pp. 441-451 ◽  
Author(s):  
S R Sooranna ◽  
E D Saggerson

1. When rat isolated fat-cells were incubated with fructose and palmitate, insulin significantly stimulated glyceride synthesis as measured by either [14C]fructose incorporation into the glycerol moiety or of [3H]palmitate incorporation into the acyl moiety of tissue glycerides. Under certain conditions the effect of insulin on glyceride synthesis was greater than the effect of insulin on fructose uptake. 2. In the presence of palmitate, insulin slightly stimulated (a) [14C]pyruvate incorporation into glyceride glycerol of fat-cells and (b) 3H2O incorporation into glyceride glycerol of incubated fat-pads. 3. At low extracellular total concentrations of fatty acids (in the presence of albumin), insulin stimulated [14C]fructose, [14C]pyruvate and 3H2O incorporation into fat-cell fatty acids. Increasing the extracellular fatty acid concentration greatly inhibited fatty acid synthesis from these precursors and also greatly decreased the extent of apparent stimulation of fatty acid synthesis by insulin. 4. These results are discussed in relation to the suggestion [A.P. Halestrap & R.M Denton (1974) Biochem. J. 142, 365-377] that the tissue may contain a specific acyl-binding protein which is subject to regulation. It is suggested that an insulin-sensitive enzyme component of the glyceride-synthesis process may play such a role.


Sign in / Sign up

Export Citation Format

Share Document