scholarly journals Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase: Structure–Activity Relationships Leading to the Chemical Probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298)

2017 ◽  
Vol 61 (2) ◽  
pp. 599-618 ◽  
Author(s):  
Pedro Soares ◽  
Morgan S. Gadd ◽  
Julianty Frost ◽  
Carles Galdeano ◽  
Lucy Ellis ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pratim Chowdhury ◽  
Dimuthu Perera ◽  
Reid T. Powell ◽  
Tia Talley ◽  
Durga Nand Tripathi ◽  
...  

AbstractLoss of primary cilia in cells deficient for the tumor suppressor von Hippel Lindau (VHL) arise from elevated Aurora Kinase A (AURKA) levels. VHL in its role as an E3 ubiquitin ligase targets AURKA for degradation and in the absence of VHL, high levels of AURKA result in destabilization of the primary cilium. We identified NVP-BEZ235, a dual PI3K/AKT and mTOR inhibitor, in an image-based high throughput screen, as a small molecule that restored primary cilia in VHL-deficient cells. We identified the ability of AKT to modulate AURKA expression at the transcript and protein level. Independent modulation of AKT and mTOR signaling decreased AURKA expression in cells confirming AURKA as a new signaling node downstream of the PI3K cascade. Corroborating these data, a genetic knockdown of AKT in cells deficient for VHL rescued the ability of these cells to ciliate. Finally, inhibition of AKT/mTOR using NVP-BEZ235 was efficacious in reducing tumor burden in a 786-0 xenograft model of renal cell carcinoma. These data highlight a previously unappreciated signaling node downstream of the AKT/mTOR pathway via AURKA that can be targeted in VHL-null cells to restore ciliogenesis.


Author(s):  
Gaël K. Scholtès ◽  
Aubrey M. Sawyer ◽  
Cristina C. Vaca ◽  
Isabelle Clerc ◽  
Meejeon Roh ◽  
...  

2020 ◽  
Vol 205 (4) ◽  
pp. 1009-1023
Author(s):  
Alisha Chitrakar ◽  
Scott A. Budda ◽  
Jacob G. Henderson ◽  
Robert C. Axtell ◽  
Lauren A. Zenewicz

2020 ◽  
Vol 11 (4) ◽  
pp. 575-581 ◽  
Author(s):  
Ka Yang ◽  
Hao Wu ◽  
Zhongrui Zhang ◽  
Eric D. Leisten ◽  
Xueqing Nie ◽  
...  

2020 ◽  
pp. 247255522097958
Author(s):  
Radosław P. Nowak ◽  
Lyn H. Jones

Proteolysis targeting chimeras (PROTACs) are heterobifunctional compounds that recruit the E3 ubiquitin ligase machinery to proteins of interest, resulting in their ubiquitination and subsequent proteasomal degradation. Targeted protein degradation has generated considerable interest in drug discovery because inhibition of one particular function of a protein often does not deliver the therapeutic efficacy that results from whole-protein depletion. However, the physicochemistry and intrinsically complex pharmacology of PROTACs present challenges, particularly for the development of orally bioavailable drugs. Here we describe the application of a translational pharmacology framework (called the four pillars) to expedite PROTAC development by informing pharmacokinetic–pharmacodynamic (PKPD) understanding and helping elucidate structure–activity relationships. Experimental methods are reviewed that help illuminate exposure of the drug or probe at the site of action (pillar 1) and engagement of its target(s) (pillar 2) that drive functional pharmacological effects (pillar 3) resulting in modulation of a relevant phenotype (pillar 4). We hope the guidance will be useful to those developing targeted protein degraders and help establish PROTAC molecules as robust target validation chemical probes.


2002 ◽  
Vol 2 (3) ◽  
pp. 131-135 ◽  
Author(s):  
Sherri K. Leung ◽  
Michael Ohh

Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL is the cause of inherited VHL disease and is associated with sporadic kidney cancer. pVHL is found in a multiprotein complex with elongins B/C, Cul2, and Rbx1 forming an E3 ubiquitin ligase complex called VEC. This modular enzyme targets theαsubunits of hypoxia-inducible factor (HIF) for ubiquitin-mediated destruction. Consequently, tumour cells lacking functional pVHL overproduce the products of HIF-target genes such as vascular endothelial growth factor (VEGF), which promotes angiogenesis. This likely accounts for the hypervascular nature of VHL-associated neoplasms. Although pVHL has been linked to the cell-cycle, differentiation, and the regulation of extracellular matrix assembly, microenvironment pH, and tissue invasiveness, this review will focus on the recent insights into the molecular mechanisms governing the E3 ubiquitin ligase function of VEC.


2003 ◽  
Vol 278 (13) ◽  
pp. 11032-11040 ◽  
Author(s):  
Mindy A. Maynard ◽  
Heng Qi ◽  
Jacky Chung ◽  
Eric H. L. Lee ◽  
Yukihiro Kondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document