scholarly journals Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase

2020 ◽  
Vol 11 (4) ◽  
pp. 575-581 ◽  
Author(s):  
Ka Yang ◽  
Hao Wu ◽  
Zhongrui Zhang ◽  
Eric D. Leisten ◽  
Xueqing Nie ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pratim Chowdhury ◽  
Dimuthu Perera ◽  
Reid T. Powell ◽  
Tia Talley ◽  
Durga Nand Tripathi ◽  
...  

AbstractLoss of primary cilia in cells deficient for the tumor suppressor von Hippel Lindau (VHL) arise from elevated Aurora Kinase A (AURKA) levels. VHL in its role as an E3 ubiquitin ligase targets AURKA for degradation and in the absence of VHL, high levels of AURKA result in destabilization of the primary cilium. We identified NVP-BEZ235, a dual PI3K/AKT and mTOR inhibitor, in an image-based high throughput screen, as a small molecule that restored primary cilia in VHL-deficient cells. We identified the ability of AKT to modulate AURKA expression at the transcript and protein level. Independent modulation of AKT and mTOR signaling decreased AURKA expression in cells confirming AURKA as a new signaling node downstream of the PI3K cascade. Corroborating these data, a genetic knockdown of AKT in cells deficient for VHL rescued the ability of these cells to ciliate. Finally, inhibition of AKT/mTOR using NVP-BEZ235 was efficacious in reducing tumor burden in a 786-0 xenograft model of renal cell carcinoma. These data highlight a previously unappreciated signaling node downstream of the AKT/mTOR pathway via AURKA that can be targeted in VHL-null cells to restore ciliogenesis.


Author(s):  
Gaël K. Scholtès ◽  
Aubrey M. Sawyer ◽  
Cristina C. Vaca ◽  
Isabelle Clerc ◽  
Meejeon Roh ◽  
...  

2020 ◽  
Vol 205 (4) ◽  
pp. 1009-1023
Author(s):  
Alisha Chitrakar ◽  
Scott A. Budda ◽  
Jacob G. Henderson ◽  
Robert C. Axtell ◽  
Lauren A. Zenewicz

2002 ◽  
Vol 2 (3) ◽  
pp. 131-135 ◽  
Author(s):  
Sherri K. Leung ◽  
Michael Ohh

Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL is the cause of inherited VHL disease and is associated with sporadic kidney cancer. pVHL is found in a multiprotein complex with elongins B/C, Cul2, and Rbx1 forming an E3 ubiquitin ligase complex called VEC. This modular enzyme targets theαsubunits of hypoxia-inducible factor (HIF) for ubiquitin-mediated destruction. Consequently, tumour cells lacking functional pVHL overproduce the products of HIF-target genes such as vascular endothelial growth factor (VEGF), which promotes angiogenesis. This likely accounts for the hypervascular nature of VHL-associated neoplasms. Although pVHL has been linked to the cell-cycle, differentiation, and the regulation of extracellular matrix assembly, microenvironment pH, and tissue invasiveness, this review will focus on the recent insights into the molecular mechanisms governing the E3 ubiquitin ligase function of VEC.


2007 ◽  
Vol 27 (20) ◽  
pp. 7284-7290 ◽  
Author(s):  
Wei-Yi Chen ◽  
Jui-Hsia Weng ◽  
Chen-Che Huang ◽  
Bon-chu Chung

ABSTRACT Histone deacetylase (HDAC) inhibitors such as trichostatin A and valproic acid modulate transcription of many genes by inhibiting the activities of HDACs, resulting in the remodeling of chromatin. Yet this effect is not universal for all genes. Here we show that HDAC inhibitors suppressed the expression of steroidogenic gene CYP11A1 and decreased steroid secretion by increasing the ubiquitination and degradation of SF-1, a factor important for the transcription of all steroidogenic genes. This was accompanied by increased expression of Ube2D1 and SKP1A, an E2 ubiquitin conjugase and a subunit of the E3 ubiquitin ligase in the Skp1/Cul1/F-box protein (SCF) family, respectively. Reducing SKP1A expression with small interfering RNA resulted in recovery of SF-1 levels, demonstrating that the activity of SCF E3 ubiquitin ligase is required for the SF-1 degradation induced by HDAC inhibitors. Overexpression of exogenous SF-1 restored steroidogenic activities even in the presence of HDAC inhibitors. Thus, increased SF-1 degradation is the cause of the reduction in steroidogenesis caused by HDAC inhibitors. The increased SKP1A expression and SCF-mediated protein degradation could be the mechanism underlying the mode of action of HDAC inhibitors.


2003 ◽  
Vol 278 (13) ◽  
pp. 11032-11040 ◽  
Author(s):  
Mindy A. Maynard ◽  
Heng Qi ◽  
Jacky Chung ◽  
Eric H. L. Lee ◽  
Yukihiro Kondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document