scholarly journals Discovery of the First in Vivo Active Inhibitors of the Soluble Epoxide Hydrolase Phosphatase Domain

2019 ◽  
Vol 62 (18) ◽  
pp. 8443-8460 ◽  
Author(s):  
Jan S. Kramer ◽  
Stefano Woltersdorf ◽  
Thomas Duflot ◽  
Kerstin Hiesinger ◽  
Felix F. Lillich ◽  
...  
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2336-2336
Author(s):  
Eriko Suzuki ◽  
Naoki Matsumoto ◽  
Keita Shibata ◽  
Terumasa Hashimoto ◽  
Kazuo Honda ◽  
...  

Abstract During the past decade, the thrombolytic enzyme tissue plasminogen activator (t-PA)-based treatment has been the standard therapy for acute ischemic stroke. However, due to its hemorrhagic risk and narrow therapeutic time window (TTW), only limited patients benefit from t-PA-based therapy, and the development of an alternative therapeutic agent is urgently needed. Reducing inflammation within the infarction area to rescue penumbra is particularly important. SMTP-7 is a small molecule that enhances plasminogen activation by modulating plasminogen conformation. SMTP-7 promotes plasmin formation and clot clearance in vivo and it is effective in treating thrombotic and embolic strokes in experimental models in rodents and a nonhuman primate. Unexpectedly, SMTP-7 reduces hemorrhagic transformation and has extended TTW as compared with t-PA. The distinct effects of SMTP-7 are partly explained by suppression of inflammatory responses following thrombolytic reperfusion, unlike t-PA. Experiments with animal inflammatory disease models (ulcerative colitis, Crohn's disease, and Guillain-Barré syndrome models) suggest that the anti-inflammatory action of SMTP-7 is independent of thrombolytic activity, as a thrombolytically inactive congener, SMTP-44D, exhibits anti-inflammatory action in those models. In this study, we searched for anti-inflammatory target of SMTP and found soluble epoxide hydrolase (sEH) as a possible candidate. We searched for a target protein using an SMTP-conjugated affinity matrix, which was synthesized by coupling SMTP-50, a congener with a primary amino group on the side chain, with gel beads. Mouse liver homogenates were subjected to affinity chromatography on this matrix, and specifically bound proteins were analyzed by peptide mass fingerprint. As a result, 4 major bound proteins were assigned to full length or fragments of soluble epoxide hydrolase (sEH), a hybrid enzyme with epoxide hydrolase activity in the C-terminal domain and lipid phosphatase activity in the N-terminal domain. The sEH hydrolase converts epoxy fatty acids, such as epoxyeicosatrienoic acids (EETs) which are endogenous anti-inflammatory lipid mediators, to less-active diol forms, such as dihydroeicosatrienoic acids (DHETs). The sEH phosphatase is implicated in lipid metabolism and hydrolysis of lysophospatidic acid, whereas its precise biological role is still unclear. SMTP-7 and SMTP-44D inhibited both hydrolase (IC50 20 and 27 µM, respectively) and phosphatase (IC50 6 and 25 µM, respectively) activities of sEH. The simplest congener SMTP-0 (IC50 28 µM for hydrolase and 29 µM for phosphatase), which consists of only the core structure common with all the SMTP congeners, was used to analyze the kinetic mechanism of sEH inhibition. The inhibition of hydrolase by SMTP-0 was competitive with respect to 14,15-EET, and the inhibition of phosphatase is uncompetitive with respect to the synthetic substrate Attophos. The inhibition of phosphatase was unchanged in the presence of a potent competitive inhibitor of hydrolase, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid. Thus, SMTP-0 may bind to two distinct sites in sEH: one is the active site in the hydrolase domain, and the other is an allosteric site that affects the phosphatase domain. Inhibition of sEH hydrolase was also observed in cells in culture. The conversion of 14,15-EET to 14,15-DHET in HepG2 cells was inhibited by SMTP-7, SMTP-44D, and SMTP-0 with IC50 at 4.5, 8.8, and 1.3 mM, respectively. To confirm sEH inhibition in vivo, we traced the fate of intravenously injected EET in the liver. Treatment of wild-type mice with SMTP-7 significantly reduced the 14, 15-DHET level (∼41% reduction, P <0.05), while no significant reduction was observed in sEH KO mice. Thrombolytically inactive SMTP-44D reduced the degree of edema and pro-inflammatory cytokine expression in a mouse embolic stroke model, whereas infarct size and neurological deficits were not ameliorated. Thus, it is possible that both thrombolytic and anti-inflammatory potentials of SMTP are important in its excellent therapeutic activity. Our present study provides evidence that SMTP-7 targets sEH for anti-inflammatory action. The inhibition of sEH and the profibrinolytic action due to plasminogen modulator activity may synergistically contribute to treatment of ischemic stroke. SMTP-7 is thus a promising alternative therapy for ischemic stroke. Disclosures: No relevant conflicts of interest to declare.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4352
Author(s):  
In Sook Cho ◽  
Jang Hoon Kim ◽  
Yunjia Lin ◽  
Xiang Dong Su ◽  
Jong Seong Kang ◽  
...  

Flavonoids and triterpenoids were revealed to be the potential inhibitors on soluble epoxide hydrolase (sEH). The aim of this study is to reveal sEH inhibitors from Fuji apples. A flavonoid and three triterpenoids derived from the fruit of Malus domestica were identified as quercetin-3-O-arabinoside (1), ursolic acid (2), corosolic acid (3), and 2-oxopomolic acid (4). They had half-maximal inhibitory concentration of the inhibitors (IC50) values of 39.3 ± 3.4, 84.5 ± 9.5, 51.3 ± 4.9, and 11.4 ± 2.7 μM, respectively, on sEH. The inhibitors bound to allosteric sites of enzymes in mixed (1) and noncompetitive modes (2–4). Molecular simulations were carried out for inhibitors 1 and 4 to calculate the binding force of ligands to receptors. The inhibitors bound to the left (1) and right (4) pockets next to the enzyme’s active site. Based on analyses of their molecular docking and dynamics, it was shown that inhibitors 1 and 4 can stably bind sEH at 1 bar and 300 K. Finally, inhibitors 1 and 4 are promising candidates for further studies using cell-based assays and in vivo cardiovascular tests.


2019 ◽  
Vol 515 (1) ◽  
pp. 248-253
Author(s):  
Naoki Matsumoto ◽  
Masaki Kataoka ◽  
Hibiki Hirosaki ◽  
Christophe Morisseau ◽  
Bruce D. Hammock ◽  
...  

2010 ◽  
Vol 298 (2) ◽  
pp. H679-H687 ◽  
Author(s):  
Matthias J. Merkel ◽  
Lijuan Liu ◽  
Zhiping Cao ◽  
William Packwood ◽  
Jennifer Young ◽  
...  

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs), primarily 14,15-EET. EETs are derived from arachidonic acid via P-450 epoxygenases and are cardioprotective. We tested the hypothesis that sEH deficiency and pharmacological inhibition elicit tolerance to ischemia via EET-mediated STAT3 signaling in vitro and in vivo. In addition, the relevance of single nucleotide polymorphisms (SNPs) of EPHX2 (the gene encoding sEH) on tolerance to oxygen and glucose deprivation and reoxygenation and glucose repletion (OGD/RGR) was assessed in male C57BL\6J (WT) or sEH knockout (sEHKO) cardiomyocytes by using transactivator of transcription (TAT)-mediated transduction with sEH mutant proteins. Cell death and hydrolase activity was lower in Arg287Gln EPHX2 mutants vs. nontransduced controls. Excess 14,15-EET and SEH inhibition did not improve cell survival in Arg287Gln mutants. In WT cells, the putative EET receptor antagonist, 14,15-EEZE, abolished the effect of 14,15-EET and sEH inhibition. Cotreatment with 14,15-EET and SEH inhibition did not provide increased protection. In vitro, STAT3 inhibition blocked 14,15-EET cytoprotection, but not the effect of SEH inhibition. However, STAT3 small interfering RNA (siRNA) abolished cytoprotection by 14,15-EET and sEH inhibition, but cells pretreated with JAK2 siRNA remained protected. In vivo, STAT3 inhibition abolished 14,15-EET-mediated infarct size reduction. In summary, the Arg287Gln mutation is associated with improved tolerance against ischemia in vitro, and inhibition of sEH preserves cardiomyocyte viability following OGD/RGR via an EET-dependent mechanism. In vivo and in vitro, 14,15-EET-mediated protection is mediated in part by STAT3.


2019 ◽  
Vol 316 (4) ◽  
pp. G527-G538 ◽  
Author(s):  
Liu Yao ◽  
Boyang Cao ◽  
Qian Cheng ◽  
Wenbin Cai ◽  
Chenji Ye ◽  
...  

Hepatic steatosis is the beginning phase of nonalcoholic fatty liver disease, and hyperhomocysteinemia (HHcy) is a significant risk factor. Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids, attenuating their cardiovascular protective effects. However, the involvement of sEH in HHcy-induced hepatic steatosis is unknown. The current study aimed to explore the role of sEH in HHcy-induced lipid disorder. We fed 6-wk-old male mice a chow diet or 2% (wt/wt) high-metnionine diet for 8 wk to establish the HHcy model. A high level of homocysteine induced lipid accumulation in vivo and in vitro, which was concomitant with the increased activity and expression of sEH. Treatment with a highly selective specific sEH inhibitor (0.8 mg·kg−1·day−1 for the animal model and 1 μM for cells) prevented HHcy-induced lipid accumulation in vivo and in vitro. Inhibition of sEH activated the peroxisome proliferator-activated receptor-α (PPAR-α), as evidenced by elevated β-oxidation of fatty acids and the expression of PPAR-α target genes in HHcy-induced hepatic steatosis. In primary cultured hepatocytes, the effect of sEH inhibition on PPAR-α activation was further confirmed by a marked increase in PPAR-response element luciferase activity, which was reversed by knock down of PPAR-α. Of note, 11,12-EET ligand dependently activated PPAR-α. Thus increased sEH activity is a key determinant in the pathogenesis of HHcy-induced hepatic steatosis, and sEH inhibition could be an effective treatment for HHcy-induced hepatic steatosis. NEW & NOTEWORTHY In the current study, we demonstrated that upregulation of soluble epoxide hydrolase (sEH) is involved in the hyperhomocysteinemia (HHcy)-caused hepatic steatosis in an HHcy mouse model and in murine primary hepatocytes. Improving hepatic steatosis in HHcy mice by pharmacological inhibition of sEH to activate peroxisome proliferator-activated receptor-α was ligand dependent, and sEH could be a potential therapeutic target for the treatment of nonalcoholic fatty liver disease.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Abishek Iyer ◽  
Kathleen Kauter ◽  
Md. Ashraful Alam ◽  
Sung Hee Hwang ◽  
Christophe Morisseau ◽  
...  

The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment withtrans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndromein vivoincluding glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document