scholarly journals Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Diet-Induced Metabolic Syndrome in Rats

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Abishek Iyer ◽  
Kathleen Kauter ◽  
Md. Ashraful Alam ◽  
Sung Hee Hwang ◽  
Christophe Morisseau ◽  
...  

The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment withtrans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndromein vivoincluding glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

2010 ◽  
Vol 298 (3) ◽  
pp. H795-H806 ◽  
Author(s):  
A. N. Simpkins ◽  
R. D. Rudic ◽  
S. Roy ◽  
H. J. Tsai ◽  
B. D. Hammock ◽  
...  

The soluble epoxide hydrolase enzyme (SEH) and vascular remodeling are associated with cardiovascular disease. Although inhibition of SEH prevents smooth muscle cell proliferation in vitro, the effects of SEH inhibition on vascular remodeling in vivo and mechanisms of these effects remain unclear. Herein we determined the effects of SEH antagonism in an endothelium intact model of vascular remodeling induced by flow reduction and an endothelium denuded model of vascular injury. We demonstrated that chronic treatment of spontaneously hypertensive stroke-prone rats with 12-(3-adamantan-1-yl-ureido) dodecanoic acid, an inhibitor of SEH, improved the increment of inward remodeling induced by common carotid ligation to a level that was comparable with normotensive Wistar Kyoto rats. Similarly, mice with deletion of the gene responsible for the production of the SEH enzyme (Ephx2−/−) demonstrated enhanced inward vascular remodeling induced by carotid ligation. However, the hyperplastic response induced by vascular injury that denudes the endothelium was unabated by SEH inhibition or Ephx2 gene deletion. These results suggest that SEH inhibition or Ephx2 gene deletion antagonizes neointimal formation in vivo by mechanisms that are endothelium dependent. Thus SEH inhibition may have therapeutic potential for flow-induced remodeling and neointimal formation.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4352
Author(s):  
In Sook Cho ◽  
Jang Hoon Kim ◽  
Yunjia Lin ◽  
Xiang Dong Su ◽  
Jong Seong Kang ◽  
...  

Flavonoids and triterpenoids were revealed to be the potential inhibitors on soluble epoxide hydrolase (sEH). The aim of this study is to reveal sEH inhibitors from Fuji apples. A flavonoid and three triterpenoids derived from the fruit of Malus domestica were identified as quercetin-3-O-arabinoside (1), ursolic acid (2), corosolic acid (3), and 2-oxopomolic acid (4). They had half-maximal inhibitory concentration of the inhibitors (IC50) values of 39.3 ± 3.4, 84.5 ± 9.5, 51.3 ± 4.9, and 11.4 ± 2.7 μM, respectively, on sEH. The inhibitors bound to allosteric sites of enzymes in mixed (1) and noncompetitive modes (2–4). Molecular simulations were carried out for inhibitors 1 and 4 to calculate the binding force of ligands to receptors. The inhibitors bound to the left (1) and right (4) pockets next to the enzyme’s active site. Based on analyses of their molecular docking and dynamics, it was shown that inhibitors 1 and 4 can stably bind sEH at 1 bar and 300 K. Finally, inhibitors 1 and 4 are promising candidates for further studies using cell-based assays and in vivo cardiovascular tests.


2010 ◽  
Vol 298 (2) ◽  
pp. H679-H687 ◽  
Author(s):  
Matthias J. Merkel ◽  
Lijuan Liu ◽  
Zhiping Cao ◽  
William Packwood ◽  
Jennifer Young ◽  
...  

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs), primarily 14,15-EET. EETs are derived from arachidonic acid via P-450 epoxygenases and are cardioprotective. We tested the hypothesis that sEH deficiency and pharmacological inhibition elicit tolerance to ischemia via EET-mediated STAT3 signaling in vitro and in vivo. In addition, the relevance of single nucleotide polymorphisms (SNPs) of EPHX2 (the gene encoding sEH) on tolerance to oxygen and glucose deprivation and reoxygenation and glucose repletion (OGD/RGR) was assessed in male C57BL\6J (WT) or sEH knockout (sEHKO) cardiomyocytes by using transactivator of transcription (TAT)-mediated transduction with sEH mutant proteins. Cell death and hydrolase activity was lower in Arg287Gln EPHX2 mutants vs. nontransduced controls. Excess 14,15-EET and SEH inhibition did not improve cell survival in Arg287Gln mutants. In WT cells, the putative EET receptor antagonist, 14,15-EEZE, abolished the effect of 14,15-EET and sEH inhibition. Cotreatment with 14,15-EET and SEH inhibition did not provide increased protection. In vitro, STAT3 inhibition blocked 14,15-EET cytoprotection, but not the effect of SEH inhibition. However, STAT3 small interfering RNA (siRNA) abolished cytoprotection by 14,15-EET and sEH inhibition, but cells pretreated with JAK2 siRNA remained protected. In vivo, STAT3 inhibition abolished 14,15-EET-mediated infarct size reduction. In summary, the Arg287Gln mutation is associated with improved tolerance against ischemia in vitro, and inhibition of sEH preserves cardiomyocyte viability following OGD/RGR via an EET-dependent mechanism. In vivo and in vitro, 14,15-EET-mediated protection is mediated in part by STAT3.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Md Ashraful Alam ◽  
Riaz Uddin ◽  
Nusrat Subhan ◽  
Md Mahbubur Rahman ◽  
Preeti Jain ◽  
...  

Diabetes, obesity, and metabolic syndrome are becoming epidemic both in developed and developing countries in recent years. Complementary and alternative medicines have been used since ancient era for the treatment of diabetes and cardiovascular diseases. Bitter melon is widely used as vegetables in daily food in Bangladesh and several other countries in Asia. The fruits extract of bitter melon showed strong antioxidant and hypoglycemic activities in experimental condition bothin vivoandin vitro. Recent scientific evaluation of this plant extracts also showed potential therapeutic benefit in diabetes and obesity related metabolic dysfunction in experimental animals and clinical studies. These beneficial effects are mediated probably by inducing lipid and fat metabolizing gene expression and increasing the function of AMPK and PPARs, and so forth. This review will thus focus on the recent findings on beneficial effect ofMomordica charantiaextracts on metabolic syndrome and discuss its potential mechanism of actions.


1992 ◽  
Vol 262 (2) ◽  
pp. L153-L162 ◽  
Author(s):  
X. Chen ◽  
S. E. Orfanos ◽  
J. D. Catravas

We investigated the effects of phorbol myristate acetate (PMA) on metabolic pulmonary endothelial ectoenzyme dysfunction. Anesthetized rabbits were placed on total heart bypass, and the single-pass transpulmonary metabolism of [3H]benzoyl-Phe-Ala-Pro (BPAP) by endothelial-bound angiotensin-converting enzyme (ACE) and [14C]adenosine 5'-monophosphate (AMP) by 5'-nucleotidase (NCT) was calculated before and after PMA (10 micrograms/kg iv), a dose that does not produce histologically evident endothelial damage. Under conditions of partial microvascular recruitment (blood flow = 400 ml/min through the entire lung), PMA, but not the vehicle, significantly reduced substrate utilization of both BPAP and adenosine 5'-monophosphate (AMP) and increased the apparent Michaelis constant (Km) values of ACE for BPAP, indicative of metabolic dysfunction. These changes were completely prevented by pretreatment with indomethacin. Under conditions of near full microvascular recruitment (blood flow = 640 ml/min through the left lung only), PMA similarly reduced substrate utilization and increased the apparent Km of ACE for BPAP. In this case, however, indomethacin failed to prevent the observed PMA-induced metabolic dysfunction. We conclude that PMA alters endothelial ectoenzyme substrate metabolism independently from changes in pulmonary blood flow; indomethacin appears to antagonize the effects of PMA under conditions of partial microvascular recruitment only, perhaps by diverting flow to previously unperfused, unexposed to PMA, and hence metabolically healthy vessels.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2336-2336
Author(s):  
Eriko Suzuki ◽  
Naoki Matsumoto ◽  
Keita Shibata ◽  
Terumasa Hashimoto ◽  
Kazuo Honda ◽  
...  

Abstract During the past decade, the thrombolytic enzyme tissue plasminogen activator (t-PA)-based treatment has been the standard therapy for acute ischemic stroke. However, due to its hemorrhagic risk and narrow therapeutic time window (TTW), only limited patients benefit from t-PA-based therapy, and the development of an alternative therapeutic agent is urgently needed. Reducing inflammation within the infarction area to rescue penumbra is particularly important. SMTP-7 is a small molecule that enhances plasminogen activation by modulating plasminogen conformation. SMTP-7 promotes plasmin formation and clot clearance in vivo and it is effective in treating thrombotic and embolic strokes in experimental models in rodents and a nonhuman primate. Unexpectedly, SMTP-7 reduces hemorrhagic transformation and has extended TTW as compared with t-PA. The distinct effects of SMTP-7 are partly explained by suppression of inflammatory responses following thrombolytic reperfusion, unlike t-PA. Experiments with animal inflammatory disease models (ulcerative colitis, Crohn's disease, and Guillain-Barré syndrome models) suggest that the anti-inflammatory action of SMTP-7 is independent of thrombolytic activity, as a thrombolytically inactive congener, SMTP-44D, exhibits anti-inflammatory action in those models. In this study, we searched for anti-inflammatory target of SMTP and found soluble epoxide hydrolase (sEH) as a possible candidate. We searched for a target protein using an SMTP-conjugated affinity matrix, which was synthesized by coupling SMTP-50, a congener with a primary amino group on the side chain, with gel beads. Mouse liver homogenates were subjected to affinity chromatography on this matrix, and specifically bound proteins were analyzed by peptide mass fingerprint. As a result, 4 major bound proteins were assigned to full length or fragments of soluble epoxide hydrolase (sEH), a hybrid enzyme with epoxide hydrolase activity in the C-terminal domain and lipid phosphatase activity in the N-terminal domain. The sEH hydrolase converts epoxy fatty acids, such as epoxyeicosatrienoic acids (EETs) which are endogenous anti-inflammatory lipid mediators, to less-active diol forms, such as dihydroeicosatrienoic acids (DHETs). The sEH phosphatase is implicated in lipid metabolism and hydrolysis of lysophospatidic acid, whereas its precise biological role is still unclear. SMTP-7 and SMTP-44D inhibited both hydrolase (IC50 20 and 27 µM, respectively) and phosphatase (IC50 6 and 25 µM, respectively) activities of sEH. The simplest congener SMTP-0 (IC50 28 µM for hydrolase and 29 µM for phosphatase), which consists of only the core structure common with all the SMTP congeners, was used to analyze the kinetic mechanism of sEH inhibition. The inhibition of hydrolase by SMTP-0 was competitive with respect to 14,15-EET, and the inhibition of phosphatase is uncompetitive with respect to the synthetic substrate Attophos. The inhibition of phosphatase was unchanged in the presence of a potent competitive inhibitor of hydrolase, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid. Thus, SMTP-0 may bind to two distinct sites in sEH: one is the active site in the hydrolase domain, and the other is an allosteric site that affects the phosphatase domain. Inhibition of sEH hydrolase was also observed in cells in culture. The conversion of 14,15-EET to 14,15-DHET in HepG2 cells was inhibited by SMTP-7, SMTP-44D, and SMTP-0 with IC50 at 4.5, 8.8, and 1.3 mM, respectively. To confirm sEH inhibition in vivo, we traced the fate of intravenously injected EET in the liver. Treatment of wild-type mice with SMTP-7 significantly reduced the 14, 15-DHET level (∼41% reduction, P <0.05), while no significant reduction was observed in sEH KO mice. Thrombolytically inactive SMTP-44D reduced the degree of edema and pro-inflammatory cytokine expression in a mouse embolic stroke model, whereas infarct size and neurological deficits were not ameliorated. Thus, it is possible that both thrombolytic and anti-inflammatory potentials of SMTP are important in its excellent therapeutic activity. Our present study provides evidence that SMTP-7 targets sEH for anti-inflammatory action. The inhibition of sEH and the profibrinolytic action due to plasminogen modulator activity may synergistically contribute to treatment of ischemic stroke. SMTP-7 is thus a promising alternative therapy for ischemic stroke. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 108 (5) ◽  
pp. 1241-1249 ◽  
Author(s):  
Suping Li ◽  
Quanwei Shi ◽  
Guanglei Liu ◽  
Weilin Zhang ◽  
Zhicheng Wang ◽  
...  

Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbα was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.


Sign in / Sign up

Export Citation Format

Share Document