Water Depletion Enhanced by Halogenation of Benzene

Author(s):  
Satoshi Shibuta ◽  
Hiroshi Imamura ◽  
Kota Shibuta ◽  
Ken Judai
Keyword(s):  
Author(s):  
D. Dupleac

The paper overviews the analytical studies performed at Politehnica University of Bucharest on the analysis of late phase severe accident phenomena in a Canada Deuterium Uranium (CANDU) plant. The calculations start from a dry debris bed at the bottom of calandria vessel. Both SCDAPSIM/RELAP code and ansys-fluent computational fluid dynamics (CFD) code are used. Parametric studies are performed in order to quantify the effect of several identified sources of uncertainty on calandria vessel failure: metallic fraction of zirconium inside the debris, containment pressure, timing of water depletion inside calandria vessel, steam circulation in calandria vessel above debris bed, debris temperature at moment of water depletion inside calandria vessel, calandria vault nodalization, and the gap heat transfer coefficient.


2013 ◽  
Vol 17 (7) ◽  
pp. 2459-2472 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen ◽  
D. Molden

Abstract. Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i) a resource base sheet, (ii) an evapotranspiration sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change) and internal influences (e.g., infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.


1999 ◽  
Vol 34 (7) ◽  
pp. 1151-1157
Author(s):  
Adaucto Bellarmino de Pereira-Netto ◽  
Antonio Celso Novaes de Magalhães ◽  
Hilton Silveira Pinto

Tropical kudzu (Pueraria phaseoloides (Roxb.) Benth., Leguminosae: Faboideae) is native to the humid Southeastern Asia. Tropical kudzu has potential as a cover crop in regions subjected to dryness. The objective of this paper was to evaluate the effect of soil water depletion on leaflet relative water content (RWC), stomatal conductance (g) and temperature (T L) in tropical kudzu. RWC of waterstressed plants dropped from 96 to 78%, following a reduction in SWC from 0.25 to 0.17 g (H2O).g (dry soil)-1.Stomatal conductance of stressed plants decreased from 221 to 98 mmol.m-2.s-1, following the reduction in soil water content (SWC). The day after re-irrigation, g of water stressed plants was 15% lower than g of unstressed plants. Differences in T L between waterstressed and unstressed plants (deltaT L) rose linearly from 0.1 to 2.2ºC following progressive water deficit. RWC and T L of waterstressed plants paralled RWC and T L of unstressed plants the day after reirrigation. The strong decrease in SWC found in this study only induced moderate water stress in tropical kudzu. In addition, tropical kudzu recover rapidly from the induced water stress after the re-irrigation.


2018 ◽  
Vol 417 ◽  
pp. 137-143 ◽  
Author(s):  
Yu Liu ◽  
Hai-Tao Miao ◽  
Ze Huang ◽  
Zeng Cui ◽  
Honghua He ◽  
...  

1994 ◽  
Vol 37 (5) ◽  
pp. 1491-1497 ◽  
Author(s):  
F. R. Lamm ◽  
D. H. Rogers ◽  
H. L. Manges

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1315
Author(s):  
Xun Bo Zhou ◽  
Guo Yun Wang ◽  
Li Yang ◽  
Hai Yan Wu

Low water availability coupled with poor planting method has posed a great challenge to winter wheat (Triticum aestivum L.) productivity. To improve productivity and water use efficiency (WUE) under deficit irrigation, an effective water-saving technology that is characterized by three planting modes has been developed (uniform with 30-cm row spacing (U), double-double row spacing of 5 cm (DD), and furrow-ridge row spacing of alternated 20 cm and 40 cm (F)) combined with three irrigation regimes (50 mm water each at growth stage 34 (GS34) and GS48 (W1), and 100 mm water at GS48 (W2), or 100 mm each water at GS34 and GS48 (W3)). Results showed that DD increased yield by 9.7% and WUE by 12.6% due to higher soil water status and less soil water depletion and evapotranspiration compared with U. Although the soil water status, soil water depletion, evapotranspiration, and yield increased with increasing irrigation amount, more soil water depletion and evapotranspiration resulted in low WUE. The deficit irrigation was beneficial for improving WUE as W1 had significantly increased yield by 5.4% and WUE by 7.1% compared with W2. Yield and evapotranspiration showed a quadratic dynamic equation indicating that yield increased with increasing evapotranspiration. Considering WUE and relatively higher yield under deficit water, W1 combined with DD is suggested to be a good management strategy to be applied in winter wheat of water-scarce regions.


Sign in / Sign up

Export Citation Format

Share Document