Disproportionation of Pharmaceutical Salts: pHmax and Phase-Solubility/pH Variance

Author(s):  
Alex Avdeef
Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Author(s):  
Narendar D ◽  
Ettireddy S

The content of this investigation was to study the influence of β-cyclodextrin and hydroxy propyl-β-cyclodextrin complexation on enhancement of solubility and dissolution rate of isradipine. Based on preliminary phase solubility studies, solid complexes prepared by freeze drying method in 1:1 molar ratio were selected and characterized by DSC for confirmation of complex formation. Prepared solid dispersions were evaluated for drug content, solubility and in vitro dissolution. The physical stability of optimized formulation was studied at refrigerated and room temperature for 2 months. Solid state characterization of optimized complex performed by DSC and XRD studies.  Dissolution rate of isradipine was increased compared with pure drug and more with HP-β-CD inclusion complex than β-CD. DSC and XRD analyzes that drug was in amorphous form, when the drug was incorporated as isradipine β-CD and HP-β-CD inclusion complex. Stability studies resulted in low or no variations in the percentage of complexation efficiency suggesting good stability of molecular complexes. The results conclusively demonstrated that the enhancement of solubility and dissolution rate of isradipine by drug-cyclodextrin complexation was achieved.   


Author(s):  
Shabnam Ain ◽  
V Gupta ◽  
Babita K ◽  
Q Ain ◽  
J Dahiya

Aqueous solubility is a critical factor for optimum drug delivery. In the present study, we investigated the potential of drug-cyclodextrin complexation as an approach for improving the solubility and bioavailability of famotidine, an H2-receptor antagonist and acid reducing drug which has poor solubility and bioavailability. Solubility improvement of drug by β-cyclodextrin was done by simple complexation approach using physical, kneading and co-precipitation methods and compared with physical mixture. Phase solubility profile indicated that the solubility of famotidine was significantly increased in presence of β-cyclodextrin and shows a linear graph with β-cyclodextrin indicating formation of inclusion complexes in a 1:1 molar ratio. β-Cyclodextrin-famotidine mixture have maximum stability constant 1477.6 M-1. The inclusion complex ratio 1:1 of kneading mixture was selected based on drug release profile and compared with physical mixture. Further characterization was done by  using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) to identify the physicochemical interaction between drug and carrier and its effect on dissolution. Dissolution rate studies for selected inclusion complex was performed in 0.1 N HCl (pH 1.2), phosphate buffer (pH 7.5) and distilled water (pH 6.8) and compared these to pure drug profile which was found to be 2.34 fold increase in distilled water, 1.83 fold in HCl and 2.01 fold in phosphate buffer (pH 7.5). These results suggest that the kneaded complex of famotidine with β-cyclodextrin as hydrophilic complexation agent can substantially enhance the solubility and dissolution rate. Such complex has promising potential to improve the bioavailability of famotidine.  


Author(s):  
Narendar Dudhipala ◽  
Arjun Narala ◽  
Dinesh Suram ◽  
Karthik Yadav Janga

The objective of this present study is to develop a semisolid dispersion (SSD) of zaleplon with the aid of self-emulsifying lipid based amphiphilic carriers (TPGS E or Gelucire 44/14) addressing the poor solubility of this drug. A linear relationship between the solubility of drug with respect to increase in the concentration of lipid surfactant in aqueous medium resulting in AL type phase diagram was observed from phase solubility studies. Fusion method was employed to obtain semisolid dispersions (SSD) of zaleplon which showed high content uniformity of drug. The absence of chemical interactions between the pure drug, excipients and formulations were conferred by Fourier transmission infrared spectroscopic examinations. The photographic images from polarized optical microscopic studies revealed the change in crystalline form of drug to amorphous or molecular state. The superior dissolution parameters of zaleplon from SSD over pure crystalline drug interpreted from in vitro dissolution studies envisage the ability of these lipid surfactants as solubility enhancers. Further, the caliber of TPGS E or Gelucire 44/14 in encouraging the GI absorption of drug was evident with the higher human effective permeability coefficient and fraction oral dose of drug absorbed from SSD in situ intestinal permeation study. In conclusion, in vivo studies in Wister rats demonstrated an improvement in the oral bioavailability of zaleplon from SSD over control pure drug suspension suggesting the competence of Gelucire 44/14 and TPGS E as conscientious carriers to augment the dissolution rate limited bioavailability of this active


2002 ◽  
Vol 124 (4) ◽  
pp. 762-770 ◽  
Author(s):  
G. S. Zhu ◽  
S. K. Aggarwal

This paper reports a numerical investigation of the transcritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbitrary Eulerian-Lagrangian, explicit-implicit method with a dynamically adaptive mesh. Three different equations of state (EOS), namely the Redlich-Kwong (RK), the Peng-Robinson (PR), and Soave-Redlich-Kwong (SRK) EOS, are employed to represent phase equilibrium at the droplet surface. In addition, two different methods are used to determine the liquid density. Results indicate that the predictions of RK-EOS are significantly different from those obtained by using the RK-EOS and SRK-EOS. For the phase-equilibrium of n-heptane-nitrogen system, the RK-EOS predicts higher liquid-phase solubility of nitrogen, higher fuel vapor concentration, lower critical-mixing-state temperature, and lower enthalpy of vaporization. As a consequence, it significantly overpredicts droplet vaporization rates, and underpredicts droplet lifetimes compared to those predicted by PR and SRK-EOS. In contrast, predictions using the PR-EOS and SRK-EOS show excellent agreement with each other and with experimental data over a wide range of conditions. A detailed investigation of the transcritical droplet vaporization phenomena indicates that at low to moderate ambient temperatures, the droplet lifetime first increases and then decreases as the ambient pressure is increased. At high ambient temperatures, however, the droplet lifetime decreases monotonically with pressure. This behavior is in accord with the reported experimental data.


2021 ◽  
Vol 14 (5) ◽  
pp. 411
Author(s):  
Md. Khalid Anwer ◽  
Muzaffar Iqbal ◽  
Mohammad Muqtader Ahmed ◽  
Mohammed F. Aldawsari ◽  
Mohd Nazam Ansari ◽  
...  

In the current study, the effect of poloxamer 188 on the complexation efficiency and dissolution of arbidol hydrochloride (ADL), a broad-spectrum antiviral agent, with β-cyclodextrin (β-CD) was investigated. Phase solubility studies confirmed a stoichiometry of a 1:1 ratio for both ADL:β-CD and ADL/β-CD with a 1% poloxamer 188 system with an AL type of phase solubility curve. The stability constants (K1:1) calculated from the AL type diagram were 550 M-1 and 2134 M-1 for AD:β-CD and ADL/β-CD with 1% poloxamer 188, respectively. The binary ADL/β-CD and ternary ADL/β-CD with 1% poloxamer 188 complexes were prepared by kneading and a solvent evaporation method and were characterized by aqueous solubility, FTIR, PXRD, DSC and SEM in vitro studies. The solubility (13.1 fold) and release of ADL were markedly improved in kneaded ternary ADL/β-CD with 1% poloxamer 188 (KDB). The binding affinity of ADL and β-CD was confirmed by 1H NMR and 2D ROSEY studies. The ternary complex (KDB) was further subjected for in vivo pharmacokinetic studies in rats and a significant improvement in the bioavailability (2.17 fold) was observed in comparison with pure ADL. Therefore, it can be concluded that the solubilization and bioavailability of ADL can be remarkably increased by ADL/β-CD complexation in the presence of a third component, poloxamer 188.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (11) ◽  
pp. 19-23
Author(s):  
J Shaikh ◽  
◽  
S. V. Deshmane ◽  
R. N Purohit ◽  
K. R. Biyani

The main objective of the present study was to enhance the solubility and dissolution rate of poorly water soluble aceclofenac using its solid dispersion with β-cyclodextrin. FTIR and DSC study was carried out to find out any incompatibility. The phase solubility of drug was carried out in 1, 2, 5, and 10% of β-cyclodextrin in distilled water. Kneading method and solvent evaporation method was use to prepared solid dispersion of aceclofenac and β-cyclodextrin. Different evaluation tests like solubility study in different solvents, PXRD and in vitro dissolution study of aceclofenac- β-cyclodextrin inclusion complex were carried out. The overall finding indicated that β-cyclodextrin is a desirable water soluble carrier, that helps in increasing solubility of drug. Due to its structural feature, β-cyclodextrin forms a good inclusion complex that decreases contact angle of drug with water molecules by increasing wetting properties. Hence, it can be concluded that, β-cyclodextrin is better water soluble carrier molecule in terms of its compatibility and increasing solubility behavior of poorly water soluble drug aceclofenac.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (06) ◽  
pp. 32-39
Author(s):  
A. K Mahapatra ◽  
◽  
P. N. Murthy

The aim of the study was to enhance the dissolution rate of atovaquone by preparing inclusion complexes with cyclodextrins (β-CD/ HP β-CD) and formulating their orodispersible tablets. Phase solubility studies were conducted by adding 0.5, 1, 2 and 4% of cyclodextrins in water. The values of Gibb’s free energy were found increased. Inclusion complexes of atovaquone were prepared using β -CD/ HP β -CD by kneading method. Tablets were formulated using superdisintegrants i.e., sodium starch glycolate, crospovidone and Ac-Di sol at concentrations of 4, 8 and 12% of tablet weight by direct compression technique. The interaction studies were made by Fourier transform infrared spectroscopy and differential scanning calorimetry, and no significant interaction was observed. Inclusion complexes showed better dissolution than pure atovaquone and HP-β-CD established better than β-CD. Inclusion complexes of atovaquone at 1:0.25 w/w (drug: HP β -CD) in the tablets with 12% of crospovidone showed satisfactory results.


2019 ◽  
Vol 234 (4) ◽  
pp. 257-268 ◽  
Author(s):  
Carina Schlesinger ◽  
Michael Bolte ◽  
Martin U. Schmidt

Abstract Structure solution of molecular crystals from powder diffraction data by real-space methods becomes challenging when the total number of degrees of freedom (DoF) for molecular position, orientation and intramolecular torsions exceeds a value of 20. Here we describe the structure determination from powder diffraction data of three pharmaceutical salts or cocrystals, each with four molecules per asymmetric unit on general position: Lamivudine camphorsulfonate (1, P 21, Z=4, Z′=2; 31 DoF), Theophylline benzamide (2, P 41, Z=8, Z′=2; 23 DoF) and Aminoglutethimide camphorsulfonate hemihydrate [3, P 21, Z=4, Z′=2; 31 DoF (if the H2O molecule is ignored)]. In the salts 1 and 3 the cations and anions have two intramolecular DoF each. The molecules in the cocrystal 2 are rigid. The structures of 1 and 2 could be solved without major problems by DASH using simulated annealing. For compound 3, indexing, space group determination and Pawley fit proceeded without problems, but the structure could not be solved by the real-space method, despite extensive trials. By chance, a single crystal of 3 was obtained and the structure was determined by single-crystal X-ray diffraction. A post-analysis revealed that the failure of the real-space method could neither be explained by common sources of error such as incorrect indexing, wrong space group, phase impurities, preferred orientation, spottiness or wrong assumptions on the molecular geometry or other user errors, nor by the real-space method itself. Finally, is turned out that the structure solution failed because of problems in the extraction of the integrated reflection intensities in the Pawley fit. With suitable extracted reflection intensities the structure of 3 could be determined in a routine way.


Sign in / Sign up

Export Citation Format

Share Document