scholarly journals Impact of C4′-O-Alkyl Linker on in Vivo Pharmacokinetics of Near-Infrared Cyanine/Monoclonal Antibody Conjugates

2015 ◽  
Vol 12 (9) ◽  
pp. 3303-3311 ◽  
Author(s):  
Kazuhide Sato ◽  
Tadanobu Nagaya ◽  
Yuko Nakamura ◽  
Toshiko Harada ◽  
Roger R. Nani ◽  
...  
2015 ◽  
Vol 27 (2) ◽  
pp. 404-413 ◽  
Author(s):  
Kazuhide Sato ◽  
Alexander P. Gorka ◽  
Tadanobu Nagaya ◽  
Megan S. Michie ◽  
Roger R. Nani ◽  
...  

2016 ◽  
Vol 12 (10) ◽  
pp. 3046-3056 ◽  
Author(s):  
Kazuhide Sato ◽  
Alexander P. Gorka ◽  
Tadanobu Nagaya ◽  
Megan S. Michie ◽  
Yuko Nakamura ◽  
...  

Small changes on cyanine dyes to the chemical structure can alter in vivo pharmacokinetics of mAb–dye conjugates.


2017 ◽  
Vol 3 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Roger R. Nani ◽  
Alexander P. Gorka ◽  
Tadanobu Nagaya ◽  
Tsuyoshi Yamamoto ◽  
Joseph Ivanic ◽  
...  

2008 ◽  
Vol 8 (3) ◽  
pp. 1155-1159 ◽  
Author(s):  
Jun Zhang ◽  
Junfeng Su ◽  
Li Liu ◽  
Yalou Huang ◽  
Ralph P. Mason

Non-invasive fluorescent imaging of preclinical animal models in vivo is a rapidly developing field with new emerging technologies and techniques. Quantum dot (QD) fluorescent probes with longer emission wavelengths in red and near infrared (NIR) emission ranges are more amenable to deep-tissue imaging, because both scattering and autofluorescence are reduced as wavelengths are increased. We have designed and synthesized red CdTe and NIR CdHgTe QDs for fluorescent imaging. We demonstrated fluorescent imaging by using CdTe and CdHgTe QDs as fluorescent probes both in vitro and in vivo. Both CdTe and CdHgTe QDs provided sensitive detection over background autofluorescence in tissue biopsies and live mice, making them attractive probes for in vivo imaging extending into deep tissues or whole animals. The studies suggest a basis of using QD-antibody conjugates to detect membrane antigens.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


1988 ◽  
Vol 60 (02) ◽  
pp. 298-304 ◽  
Author(s):  
C A Mitchell ◽  
S M Kelemen ◽  
H H Salem

SummaryProtein S (PS) is a vitamin K-dependent anticoagulant that acts as a cofactor to activated protein C (APC). To date PS has not been shown to possess anticoagulant activity in the absence of APC.In this study, we have developed monoclonal antibody to protein S and used to purify the protein to homogeneity from plasma. Affinity purified protein S (PSM), although identical to the conventionally purified protein as judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when measured in a factor Xa recalcification time. Using SDS-PAGE we have demonstrated that prothrombin cleavage by factor X awas inhibited in the presence of PSM. Kinetic analysis of the reaction revealed that PSM competitively inhibited factor X amediated cleavage of prothrombin. PS preincubated with the monoclonal antibody, acquired similar anticoagulant properties. These results suggest that the interaction of the monoclonal antibody with PS results in an alteration in the protein exposing sites that mediate the observed anticoagulant effect. Support that the protein was altered was derived from the observation that PSM was eight fold more sensitive to cleavage by thrombin and human neutrophil elastase than conventionally purified protein S.These observations suggest that PS can be modified in vitro to a protein with APC-independent anticoagulant activity and raise the possibility that a similar alteration could occur in vivo through the binding protein S to a cellular or plasma protein.


Sign in / Sign up

Export Citation Format

Share Document