Correction to “Intranuclear Drug Delivery and Effective in Vivo Cancer Therapy via Estradiol–PEG-Appended Multiwalled Carbon Nanotubes”

2016 ◽  
Vol 13 (2) ◽  
pp. 698-698
Author(s):  
Manasmita Das ◽  
Raman Preet Singh ◽  
Satyajit R. Datir ◽  
Sanyog Jain
2013 ◽  
Vol 10 (9) ◽  
pp. 3404-3416 ◽  
Author(s):  
Manasmita Das ◽  
Raman Preet Singh ◽  
Satyajit R. Datir ◽  
Sanyog Jain

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuxin Qi ◽  
Wenping Yang ◽  
Shuang Liu ◽  
Fanjie Han ◽  
Haibin Wang ◽  
...  

Abstract Background Lung cancer is one of the important health threats worldwide, of which 5-year survival rate is less than 15%. Non-small-cell lung cancer (NSCLC) accounts for about 80% of all lung cancer with high metastasis and mortality. Methods Cisplatin loaded multiwalled carbon nanotubes (Pt-MWNTS) were synthesized and used to evaluate the anticancer effect in our study. The NSCLC cell lines A549 (cisplatin sensitive) and A549/DDP (cisplatin resistant) were used in our in vitro assays. MTT was used to determine Cancer cells viability and invasion were measured by MTT assay and Transwell assay, respectively. Apoptosis and epithelial-mesenchymal transition related marker proteins were measured by western blot. The in vivo anti-cancer effect of Pt-MWNTs were performed in male BALB/c nude mice (4-week old). Results Pt-MWNTS were synthesized and characterized by X-ray diffraction, Raman, FT-IR spectroscopy and scan electron microscopy. No significant cytotoxicity of MWNTS was detected in both A549/DDP and A549 cell lines. However, Pt-MWNTS showed a stronger inhibition effect on cell growth than free cisplatin, especially on A549/DDP. We found Pt-MWNTS showed higher intracellular accumulation of cisplatin in A549/DDP cells than free cisplatin and resulted in enhanced the percent of apoptotic cells. Western blot showed that application of Pt-MWNTS can significantly upregulate the expression level of Bax, Bim, Bid, Caspase-3 and Caspase-9 while downregulate the expression level of Bcl-2, compared with free cisplatin. Moreover, the expression level of mesenchymal markers like Vimentin and N-cadherin was more efficiently reduced by Pt-MWNTS treatment in A549/DDP cells than free cisplatin. In vivo study in nude mice proved that Pt-MWNTS more effectively inhibited tumorigenesis compared with cisplatin, although both of them had no significant effect on body weight. Conclusion Pt-MWNT reverses the drug resistance in the A549/DDP cell line, underlying its possibility of treating NSCLC with cisplatin resistance.


2020 ◽  
Vol 8 (15) ◽  
pp. 3123-3137 ◽  
Author(s):  
Pinar Sinem Omurtag Ozgen ◽  
Sezen Atasoy ◽  
Belma Zengin Kurt ◽  
Zehra Durmus ◽  
Gulsah Yigit ◽  
...  

Carbon-based nanomaterials (CNMs) have attracted great attention in biomedical applications such as cancer imaging and therapy.


2016 ◽  
Vol 33 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Nidhi Rawat ◽  
Sandhya ◽  
Kesavan Subaharan ◽  
M Eswaramoorthy ◽  
Gautam Kaul

In the present work, we took two nanomaterials (NMs), mesoporous silica nanoparticles (MSNs) and multiwalled carbon nanotubes (MWCNTs), and compared their in vivo toxicity taking albino mice as a test animal model. Presently, conflicting data persist regarding behavior of these NMs with macromolecules like protein and lipid at the cellular level in cell lines as well as in animal models and this generated the interest to study them. The mice were treated orally with a single dose of 50 ppm MWCNTs and intraperitoneally with 10, 25, and 50 mg kg−1 body weight (BW) of MSNs and 1.5, 2.0, and 2.5 mg kg−1 BW of MWCNTs. Liver enzyme markers serum aspartate aminotransferase (AST), alanine aminotransferase, and alkaline phosphatase along with total protein (TP) levels were evaluated 7 days postexposure. No significant differences in organ weight indices or enzyme levels were observed between different treatment doses but there were significant differences between the treatment groups and the controls. Of the three enzymes assayed, AST displayed a peculiar pattern, especially in the MWCNTs intraperitoneally treated group. TP level was significantly increased in the orally treated MWCNTs group. The results showed that MWCNTs even at much smaller doses than MSNs displayed similar toxicity levels, suggesting that toxicity of MWCNTs is greater than MSNs.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chuanjin Wang ◽  
Wei Li

Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI) is a poorly water-soluble diterpenoid compound (C20H28O6) used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH) were used as ORI carrier. ORI was noncovalently encapsulated into (or onto) the functionalized carbon nanotubes (MWCNTs-ORI). The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w).In vitrocytotoxicity assay on MWCNTs-ORI gave IC50of7.29±0.5 μg/mL and ORI-F gave IC50of14.5±1.4 μg/mL. The antitumor effect studiesin vivoshowed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1) was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1) which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2588
Author(s):  
Nader Tanideh ◽  
Negar Azarpira ◽  
Najmeh Sarafraz ◽  
Shahrokh Zare ◽  
Aida Rowshanghiyas ◽  
...  

Appropriate selection of suitable materials and methods is essential for scaffolds fabrication in tissue engineering. The major challenge is to mimic the structure and functions of the extracellular matrix (ECM) of the native tissues. In this study, an optimized 3D structure containing poly(3-hydroxybutyrate) (P3HB), multiwalled carbon nanotubes (MCNTs) and curcumin (CUR) was created by electrospinning a novel biomimetic scaffold. CUR, a natural anti-inflammatory compound, has been selected as a bioactive component to increase the biocompatibility and reduce the potential inflammatory reaction of electrospun scaffolds. The presence of CUR in electrospun scaffolds was confirmed by 1H NMR and Fourier-transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) revealed highly interconnected porosity of the obtained 3D structures. Addition of up to 20 wt% CUR has enhanced mechanical properties of the scaffolds. CUR has also promoted in vitro bioactivity and hydrolytic degradation of the electrospun nanofibers. The developed P3HB-MCNT composite scaffolds containing 20 wt% of CUR revealed excellent in vitro cytocompatibility using mesenchymal stem cells and in vivo biocompatibility in rat animal model study. Importantly, the reduced inflammatory reaction in the rat model after 8 weeks of implantation has also been observed for scaffolds modified with CUR. Overall, newly developed P3HB-MCNTs-CUR electrospun scaffolds have demonstrated their high potential for tissue engineering applications.


Author(s):  
E Snegin ◽  
A Gusev ◽  
E Snegina ◽  
A Barkhatov ◽  
I Vasyukova ◽  
...  

2017 ◽  
Vol 521 (1-2) ◽  
pp. 69-72 ◽  
Author(s):  
Niccolò Sciortino ◽  
Stefano Fedeli ◽  
Paolo Paoli ◽  
Alberto Brandi ◽  
Paola Chiarugi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document