scholarly journals Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core–Shell Nanowires As Revealed by in situ Transmission Electron Microscopy

Nano Letters ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 7238-7246 ◽  
Author(s):  
Chao Zhang ◽  
Dmitry G. Kvashnin ◽  
Laure Bourgeois ◽  
Joseph F. S. Fernando ◽  
Konstantin Firestein ◽  
...  

2014 ◽  
Vol 105 (12) ◽  
pp. 121602 ◽  
Author(s):  
Javier Grandal ◽  
Mingjian Wu ◽  
Xiang Kong ◽  
Michael Hanke ◽  
Emmanouil Dimakis ◽  
...  


2021 ◽  
Author(s):  
Janusz Sadowski ◽  
Anna Kaleta ◽  
Serhii Kryvyi ◽  
Dorota Janaszko ◽  
Bogusława Kurowska ◽  
...  

Abstract Incorporation of Bi into GaAs-(Ga,Al)As-Ga(As,Bi) core-shell nanowires grown by molecular beam epitaxy is studied with transmission electron microscopy. Nanowires are grown on GaAs(100) substrates with Au-droplet assisted mode. Bi-doped shells are grown at low temperature (300 °C) with a close to stoichiometric Ga/As flux ratio. At low Bi fluxes, the Ga(As,Bi) shells are smooth, with Bi completely incorporated into the shells. Higher Bi fluxes (Bi/As flux ratio ~ 4%) led to partial segregation of Bi as droplets on the nanowires sidewalls, preferentially located at the nanowire segments with wurtzite structure. We demonstrate that such Bi droplets on the sidewalls act as catalysts for the growth of branches perpendicular to the GaAs trunks. Due to the tunability between zinc-blende and wurtzite polytypes by changing the nanowire growth conditions, this effect enables fabrication of branched nanowire architectures with branches generated from selected (wurtzite) nanowire segments.



CrystEngComm ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1895-1902 ◽  
Author(s):  
Bojia Xu ◽  
Baobao Cao

Hidden epitaxial interfaces were revealed via cross-sectional TEM study of novel quasi-hexagonal SnO2/Zn2SnO4 core–shell nanowires.



2008 ◽  
Vol 8 (11) ◽  
pp. 5715-5719 ◽  
Author(s):  
Hyoun Woo Kim ◽  
Jong Woo Lee ◽  
Mesfin A. Kebede ◽  
Hyo Sung Kim ◽  
Buddhudu Srinivasa ◽  
...  

We have prepared MgO/Au core–shell nanowires, subsequently demonstrating the fabrication of Au nanotubes by using MgO nanowires as a sacrificial template. The samples were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. MgO nanowires were coated with a conformal layer of Au via sputtering. By etching away the MgO core in aqueous (NH3)2SO4 solution, hollow nanotube-like structures of Au were readily obtained. This approach offers a potentially useful route for the fabrication of a variety of hollow metallic structures.







2017 ◽  
Vol 23 (3) ◽  
pp. 501-512 ◽  
Author(s):  
Sina Baier ◽  
Christian D. Damsgaard ◽  
Michael Klumpp ◽  
Juliane Reinhardt ◽  
Thomas Sheppard ◽  
...  

AbstractWhen using bifunctional core@shell catalysts, the stability of both the shell and core–shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) andin situhard X-ray ptychography with a specially designedin situcell. Both reductive activation and reoxidation were applied. The core–shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM andin situX-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C,in situX-ray ptychography indicated the occurrence of structural changes also on theµm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core–shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlativein situmicroscopy techniques for hierarchically designed catalysts.





Sign in / Sign up

Export Citation Format

Share Document