Effects of Platinum Group Metals on MoS2 Nanosheets for a High-Performance Hydrogen Evolution Reaction Catalyst

Author(s):  
Han young Jung ◽  
Min ju Chae ◽  
Jong hwan Park ◽  
Young il Song ◽  
Jae chul Ro ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (39) ◽  
pp. 22232-22239 ◽  
Author(s):  
Ashwani Kumar Singh ◽  
Jagdees Prasad ◽  
Uday Pratap Azad ◽  
Ashish Kumar Singh ◽  
Rajiv Prakash ◽  
...  

In this paper, we demonstrate a facile solvothermal synthesis of a vanadium(v) doped MoS2-rGO nanocomposites for highly efficient electrochemical hydrogen evolution reaction (HER) at room temperature.


Nanoscale ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 2439-2446 ◽  
Author(s):  
Paulraj Gnanasekar ◽  
Dharmaraj Periyanagounder ◽  
Jeganathan Kulandaivel

The integration of vertically aligned MoS2 NS with graphene resulted in highly stable, robust and high-performance metal-free hybrid electrocatalysts for hydrogen evolution reaction.


RSC Advances ◽  
2014 ◽  
Vol 4 (66) ◽  
pp. 34733-34738 ◽  
Author(s):  
Jiao Deng ◽  
Wentao Yuan ◽  
Pengju Ren ◽  
Yong Wang ◽  
Dehui Deng ◽  
...  

Layer-controlled MoS2 nanosheets, directly prepared through a facile and scalable chemical method, exhibit a significant layer number effect on the hydrogen evolution reaction (HER).


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3273
Author(s):  
Kunjie Wang ◽  
Jiahui Zhang ◽  
Yachen Ye ◽  
Hongbin Ma ◽  
Bingxin Liu ◽  
...  

1T-phase molybdenum disulfide is supposed to be one of the non-precious metal-based electrocatalysts for the hydrogen evolution reaction with the highest potential. Herein, 1T-MoS2 nanosheets were anchored on N-doped carbon nanotubes by a simple hydrothermal process with the assistance of urea promotion transition of the 1T phase. Based on the 1T-MoS2 nanosheets anchored on the N-doped carbon nanotubes structures, 1T-MoS2 nanosheets can be said to have highly exposed active sites from edges and the basal plane, and the dopant N in carbon nanotubes can promote electron transfer between N-doped carbon nanotubes and 1T-MoS2 nanosheets. With the synergistic effects of this structure, the excellent 1T-MoS2/ N-doped carbon nanotubes catalyst has a small overpotential of 150 mV at 10 mA cm−2, a relatively low Tafel slope of 63 mV dec−1, and superior stability. This work proposes a new strategy to design high-performance hydrogen evolution reaction catalysts.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Qian Zhang ◽  
Shuihua Tang ◽  
Lieha Shen ◽  
Weixiang Yang ◽  
Zhen Tang ◽  
...  

Developing cost-effective and high-performance electrocatalysts for hydrogen evolution reaction (HER) are imperative thanks to rapid increase of fuel-cell driven vehicles. Tungsten (W) possesses advantages of optimized hydrogen adsorption energy and...


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Getachew Solomon ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
Isabella Concina ◽  
Alberto Vomiero

Molybdenum sulfide (MoS2) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2) and advanced microwave methods (MW-MoS2), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.


2015 ◽  
Vol 6 (8) ◽  
pp. 4623-4635 ◽  
Author(s):  
Gang Cheng ◽  
Gary Kwok-Ming So ◽  
Wai-Pong To ◽  
Yong Chen ◽  
Chi-Chung Kwok ◽  
...  

High performance orange (EQE up to 15.64%) and white (EQE up to 6.88%) solution processed OLEDs fabricated solely with emitters of non-platinum group metals were reported. The white device has CIE coordinates of (0.42, 0.44) and CRI of 81.


Sign in / Sign up

Export Citation Format

Share Document