Biodegradable Magnesium-Incorporated Poly(l-lactic acid) Microspheres for Manipulation of Drug Release and Alleviation of Inflammatory Response

2019 ◽  
Vol 11 (26) ◽  
pp. 23546-23557 ◽  
Author(s):  
Fenghe Yang ◽  
Xufeng Niu ◽  
Xuenan Gu ◽  
Chuanping Xu ◽  
Wei Wang ◽  
...  
2012 ◽  
Vol 44 ◽  
pp. 866-868 ◽  
Author(s):  
A.P.S. Immich ◽  
M. Lis ◽  
L.H. Catalani ◽  
R.L. Boemo ◽  
J.A. Tornero

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Takashi Sasaki ◽  
Hiroaki Matsuura ◽  
Kazuki Tanaka

Porous polymer spheres are promising materials as carriers for controlled drug release. As a new drug-carrier material, blend particles composed of poly(L-lactic acid) (PLLA) and rifampicin were developed using the freeze-drying technique. The blend particles exhibit high porosity with a specific surface area of 10–40 m2 g−1. Both the size and porosity of the particles depend on the concentration of the original solution and on the method of freezing. With respect to the latter, we used the drop method (pouring the original solution dropwise into liquid nitrogen) and the spray method (freezing a mist of the original solution). The release kinetics of rifampicin from the blend particles into water depends significantly on the morphology of the blend particles. The results show that the release rate can be controlled to a great extent by tuning the size and porosity of the blend particles, both of which are varied by parameters such as the solution concentration and the method of freezing.


Sign in / Sign up

Export Citation Format

Share Document