scholarly journals Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS2: Implications for 2D Electronic Devices

2021 ◽  
Vol 4 (9) ◽  
pp. 8834-8844
Author(s):  
Milos Krbal ◽  
Vit Prokop ◽  
Alexey A. Kononov ◽  
Jhonatan Rodriguez Pereira ◽  
Jan Mistrik ◽  
...  
2021 ◽  
Vol 7 (2) ◽  
pp. eabe3097
Author(s):  
Hongwei Sheng ◽  
Jingjing Zhou ◽  
Bo Li ◽  
Yuhang He ◽  
Xuetao Zhang ◽  
...  

It has been an outstanding challenge to achieve implantable energy modules that are mechanically soft (compatible with soft organs and tissues), have compact form factors, and are biodegradable (present for a desired time frame to power biodegradable, implantable medical electronics). Here, we present a fully biodegradable and bioabsorbable high-performance supercapacitor implant, which is lightweight and has a thin structure, mechanical flexibility, tunable degradation duration, and biocompatibility. The supercapacitor with a high areal capacitance (112.5 mF cm−2 at 1 mA cm−2) and energy density (15.64 μWh cm−2) uses two-dimensional, amorphous molybdenum oxide (MoOx) flakes as electrodes, which are grown in situ on water-soluble Mo foil using a green electrochemical strategy. Biodegradation behaviors and biocompatibility of the associated materials and the supercapacitor implant are systematically studied. Demonstrations of a supercapacitor implant that powers several electronic devices and that is completely degraded after implantation and absorbed in rat body shed light on its potential uses.


2020 ◽  
Vol 11 ◽  
pp. 662-670
Author(s):  
Matangi Sricharan ◽  
Bikesh Gupta ◽  
Sreejesh Moolayadukkam ◽  
H S S Ramakrishna Matte

MoO3 is a versatile two-dimensional transition metal oxide having applications in areas such as energy storage devices, electronic devices and catalysis. To efficiently utilize the properties of MoO3 arising from its two-dimensional nature exfoliation is necessary. In this work, the exfoliation of MoO3 is carried out in 2-butanone for the first time. The achieved concentration of the dispersion is about 0.57 mg·mL−1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly, the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50 mV·s−1.


NANO ◽  
2019 ◽  
Vol 14 (02) ◽  
pp. 1930001 ◽  
Author(s):  
Xiaobei Zang ◽  
Teng Wang ◽  
Zhiyuan Han ◽  
Lingtong Li ◽  
Xin Wu

The upcoming energy crisis and the increasing power requirements of electronic devices have drawn enormous attention to research in the field of energy storage. Owing to compelling electrochemical and mechanical properties, two-dimensional nanomaterials can be used as electrodes on lithium-ion batteries to obtain high capacity and long cycle life. This review summarized the recent advances in the application of 2D nanomaterials on the electrode materials of lithium-ion batteries.


2019 ◽  
Vol 7 (24) ◽  
pp. 14545-14551 ◽  
Author(s):  
Ramesh Naidu Jenjeti ◽  
Rajat Kumar ◽  
S. Sampath

Chemically and electrically sensitive two-dimensional (2D) nanomaterials are of immense interest as probing electrodes for wearable electronic devices.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Han ◽  
Pu Huang ◽  
Liang Li ◽  
Fakun Wang ◽  
Peng Luo ◽  
...  

Abstract Two-dimensional molecular crystals, consisting of zero-dimensional molecules, are very appealing due to their novel physical properties. However, they are mostly limited to organic molecules. The synthesis of inorganic version of two-dimensional molecular crystals is still a challenge due to the difficulties in controlling the crystal phase and growth plane. Here, we design a passivator-assisted vapor deposition method for the growth of two-dimensional Sb2O3 inorganic molecular crystals as thin as monolayer. The passivator can prevent the heterophase nucleation and suppress the growth of low-energy planes, and enable the molecule-by-molecule lateral growth along high-energy planes. Using Raman spectroscopy and in situ transmission electron microscopy, we show that the insulating α-phase of Sb2O3 flakes can be transformed into semiconducting β-phase under heat and electron-beam irradiation. Our findings can be extended to the controlled growth of other two-dimensional inorganic molecular crystals and open up opportunities for potential molecular electronic devices.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
W. X. Zhou ◽  
H. J. Wu ◽  
J. Zhou ◽  
S. W. Zeng ◽  
C. J. Li ◽  
...  

Abstract Integrating multiple properties in a single system is crucial for the continuous developments in electronic devices. However, some physical properties are mutually exclusive in nature. Here, we report the coexistence of two seemingly mutually exclusive properties-polarity and two-dimensional conductivity-in ferroelectric Ba0.2Sr0.8TiO3 thin films at the LaAlO3/Ba0.2Sr0.8TiO3 interface at room temperature. The polarity of a ∼3.2 nm Ba0.2Sr0.8TiO3 thin film is preserved with a two-dimensional mobile carrier density of ∼0.05 electron per unit cell. We show that the electronic reconstruction resulting from the competition between the built-in electric field of LaAlO3 and the polarization of Ba0.2Sr0.8TiO3 is responsible for this unusual two-dimensional conducting polar phase. The general concept of exploiting mutually exclusive properties at oxide interfaces via electronic reconstruction may be applicable to other strongly-correlated oxide interfaces, thus opening windows to new functional nanoscale materials for applications in novel nanoelectronics.


2020 ◽  
Vol 22 (19) ◽  
pp. 10893-10899 ◽  
Author(s):  
Yusuf Zuntu Abdullahi ◽  
Zeynep Demir Vatansever ◽  
Ethem Aktürk ◽  
Ümit Akıncı ◽  
Olcay Üzengi Aktürk

Exploring the magnetic properties of two-dimensional (2D) metal boride (MBene) sheets for spin-based electronics is gaining importance for developing electronic devices.


2020 ◽  
Vol 12 (22) ◽  
pp. 25200-25210 ◽  
Author(s):  
Changhyeon Yoo ◽  
Md Golam Kaium ◽  
Luis Hurtado ◽  
Hao Li ◽  
Sushant Rassay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document