Molecularly Imprinted Photonic Crystals Based on Fusaric Acid for the Detection of Banana Fusarium Wilt

Author(s):  
Yaling Lin ◽  
Xixiang Feng ◽  
Wei Zhang ◽  
Rui Li ◽  
Anqiang Zhang
2016 ◽  
Vol 9 (2) ◽  
pp. 66
Author(s):  
Deden Sukmadjaja ◽  
Ragapadmi Purnamaningsih ◽  
Tri P. Priyatno

<p>Fusarium wilt of banana (Musa spp.) caused by<br />Fusarium oxysporum f. sp. cubense (Foc) is the most serious<br />problem faced in banana cultivation in terms of plant<br />productivity and fruit quality. Mutation breeding is one of the<br />alternative method that can be applied in producing new<br />banana cultivar. Mutants can be induced by chemical<br />mutagen such as ethyl methane sulfonate (EMS) followed by<br />in vitro selection and then evaluation of the mutants to<br />fusarium wilt disease in glasshouse and Foc infected field.<br />The aim of this research was obtained EMS induced and in<br />vitro selected mutants of banana var. Ambon Kuning and<br />evaluated Foc disease resistant clones in glasshouse and<br />Foc infected field. The first step to obtain the explants for<br />this research was initiation and formation of multiple bud<br />clumps (MBC) using MS basal media supplemented with 5,<br />10, and 20 mg/l of benzyladenin. Plant regeneration of MBC<br />was also studied by using MS media containing 0, 0.2, and 1<br />mg/l of benzyladenin. To induce mutagenesis, MBC was<br />soaked in 0.1, 0.3, and 0.5% (v/v) EMS for 1, 2, and 3 hours.<br />The assesment of resistant MBC mutants to Fusarium<br />phytotoxin was conducted by using fusaric acid (FA) as<br />selection agent in concentration of 30, 45, and 60 ppm.<br />Putative mutant plants produced by in vitro selection were<br />further tested using spore solution of Foc race 4 in<br />glasshouse. Meanwhile, Foc resistance assesment in the<br />infected field was conducted in Pasirkuda Experimental<br />Station, Bogor Agricultural University. The results showed<br />that MBC can be formed in MS basal media supplemented<br />with 10 or 20 mg/l benzyladenin. The EMS played a role in<br />obtaining mutants by producing 68 MBC putative mutants<br />tolerant to Foc based on FA selection. Further evaluation in<br />the glasshouse was obtained 64 Foc resistant plants from<br />391 putative mutants produced by in vitro selection.<br />Evaluation in the Foc infected field showed six clones<br />survived until generative phase (12 month of age).</p>


2020 ◽  
Vol 21 (9) ◽  
pp. 3370
Author(s):  
Ruirui Wang ◽  
Jian Huang ◽  
Aichen Liang ◽  
Ying Wang ◽  
Luis Alejandro Jose Mur ◽  
...  

Fusaric acid (FA), the fungal toxin produced by Fusarium oxysporum, plays a predominant role in the virulence and symptom development of Fusarium wilt disease. As mineral nutrients can be protective agents against Fusarium wilt, hydroponic experiments employing zinc (Zn) and copper (Cu) followed by FA treatment were conducted in a glasshouse. FA exhibited strong phytotoxicity on cucumber plants, which was reversed by the addition of Zn or Cu. Thus, Zn or Cu dramatically reduced the wilt index, alleviated the leaf or root cell membrane injury and mitigated against the FA inhibition of plant growth and photosynthesis. Cucumber plants grown with Zn exhibited decreased FA transportation to shoots and a 17% increase in toxicity mitigation and showed minimal hydrogen peroxide, lipid peroxidation level with the increased of antioxidant enzymes activity in both roots and leaves. Cucumber grown with additional Cu absorbed less FA but showed more toxicity mitigation at 20% compared to with additional Zn and exhibited decreased hydrogen peroxide level and increased antioxidant enzymes activity. Thus, adding Zn or Cu can decrease the toxicity of the FA by affecting the absorption or transportation of the FA in plants and mitigate toxicity possibly through chelation. Zn and Cu modify the antioxidant system to scavenge hydrogen peroxide for suppressing FA induction of oxidative damage. Our experiments could provide a theoretical basis for the direct application of micro-fertilizer as protective agents in farming.


RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 83663-83667 ◽  
Author(s):  
Aimei You ◽  
Yuhua Cao ◽  
Guangqun Cao

A colorimetric colloidal MIPC sensor was constructed by the magnetic assembly of MMIP colloids, it could directly transmit the stimuli from the adsorption of MEL into visually perceptible optical signals.


2013 ◽  
Vol 15 (40) ◽  
pp. 17250 ◽  
Author(s):  
Yongli Zhang ◽  
Zeng Pan ◽  
Yanxia Yuan ◽  
Zhiming Sun ◽  
Junkui Ma ◽  
...  

2013 ◽  
Vol 37 (3) ◽  
pp. 281-286 ◽  
Author(s):  
Michael Appell ◽  
Michael A. Jackson ◽  
Lijuan C. Wang ◽  
Che-Hin Ho ◽  
Anja Mueller

2016 ◽  
Vol 19 (1) ◽  
pp. 40
Author(s):  
Christanti Sumardiyono ◽  
Suharyanto Suharyanto ◽  
Suryanti Suryanti ◽  
Putri Rositasari ◽  
Yufita Dwi Chinta

Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is the most destructive disease of banana. Until today this disease has not been successfully controlled. Fusaric acid is a toxin produced by Foc. Tyloses produced inxylem that caused wilting and yellowing of banana plants, inhibit soil nutrition and water stream. The study carried out previously showed that enriched fusaric acid in banana culture induced the resistance of banana seedlings against Foc. The signal of induced resistance increased the phenolic compounds. One of the phenolic compounds is salicylic acid. The aim of this study was to detect induced resistance of banana plant from tissue cultured enriched with fusaric acid. The experiment was done in the field highly infected with Foc. Observation of resistance was done by measuring disease percentage of yellowing and wilting leaves.Tyloses produced in xylem was observed microscopically from cross section of root. Root damage intensity was counted using tyloses score. Salicylic acid content of root was analyzed with phenolic compounds method using HPLC. The results showed that banana plants from enriched tissues culture with 1.165 ppm of fusaric acid increased the resistance against Foc, but salicylic acid was not detected. Salicylic acid was only detected at low concentration (2 ppb) in moderate resistant banana roots from induced plants with 9.32 ppm of fusaric acid. The chromatogram showed three peaks of unknown phenolic compounds. Tyloses intensity was not related with induced resistance of banana against fusarium wilt. Advanced research is needed with more plants samples. It was suggested to identify the phenolic compounds which were detected in induced resistant plant.Keywords: banana, fusaric acid, fusarium wilt, induced resistance, salicylic acidLayu fusarium yang disebabkan oleh Fusarium oxysporum f. sp. cubense (Foc) adalah penyakit yang sangat merusak pada pisang dan belum dapat dikendalikan secara tuntas. Gejala berupa kelayuan daun karena tersumbatnya xilem karenapembentukan tilosis yaitu pertumbuhan sel dalam jaringan xilem. Pengimbasan ketahanan diharapkan dapat menjadi salah satu cara pengendalian penyakit layu fusarium. Penelitian sebelumnya menunjukkan penambahan asam fusaratdalam kultur jaringan dapat mengimbas ketahanan bibit pisang terhadap penyakit layu fusarium. Asam salisilat adalah salah satu signal ketahanan yang akan meningkat kandungannya bila terjadi peningkatan ketahanan akibat pengimbasan. Penelitian ini bertujuan untuk mendeteksi hasil pengimbasan ketahanan pisang dengan asam fusarat dalam kultur jaringan. Tanaman telah ditanam di lapangan yang terinfeksi berat oleh Foc. Intensitas penyakit di lapang diamati dengan menghitung persentase daun menguning dan atau layu. Intensitas kerusakan akar diamati dengan pembuatan irisan tipis dan pengamatan tilosis dengan cara skoring. Analisis asam salisilat dalam akar dilakukan dengan metode analisis senyawa fenol menggunakan HPLC. Hasil penelitian tanaman dari bibit yang diimbas dengan 1,165 ppm asam fusarat dalam kultur jaringan menunjukkan peningkatan ketahanan di lapang. Intensitas tilosis lebih rendah pada tanaman yang diimbas ketahanannya dibandingkan yang tidak diimbas. Asam salisilat dalam tanaman yang diimbas ketahannnya denganasam fusarat 9,32 ppm terdeteksi pada konsentrasi yang sangat rendah yaitu 2 ppb, dengan ketahanan moderat. Pada tanaman hasil pengimbasan yang menunjukkan kriteria tahan asam salisilat tidak terdeteksi, namun terdeteksi tigapuncak senyawa fenol yang belum teridentifikasi. Intensitas tilosis pada tanaman yang diimbas ketahanannya tidak menunjukkan penurunan dibandingkan dengan tanaman yang tidak diperlakukan. Penelitian ini perlu dilanjutkan dengan sampel yang lebih banyak. Identifikasi jenis senyawa fenol perlu dilakukan dalam penelitian lanjutan.Kata kunci: asam fusarat, asam salisilat, layu fusarium, pengimbasan ketahanan, pisang


Sign in / Sign up

Export Citation Format

Share Document