Interpenetrating Alginate-Collagen Polymer Network Microspheres for Modular Tissue Engineering

2017 ◽  
Vol 4 (11) ◽  
pp. 3704-3712 ◽  
Author(s):  
Redouan Mahou ◽  
Alexander E Vlahos ◽  
Avital Shulman ◽  
Michael V. Sefton
RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pradeep Kumar ◽  
Viness Pillay ◽  
Yahya E. Choonara

AbstractThree-dimensional porous scaffolds are widely employed in tissue engineering and regenerative medicine for their ability to carry bioactives and cells; and for their platform properties to allow for bridging-the-gap within an injured tissue. This study describes the effect of various methoxypolyethylene glycol (mPEG) derivatives (mPEG (-OCH3 functionality), mPEG-aldehyde (mPEG-CHO) and mPEG-acetic acid (mPEG-COOH)) on the morphology and physical properties of chemically crosslinked, semi-interpenetrating polymer network (IPN), chitosan (CHT)/mPEG blend cryosponges. Physicochemical and molecular characterization revealed that the –CHO and –COOH functional groups in mPEG derivatives interacted with the –NH2 functionality of the chitosan chain. The distinguishing feature of the cryosponges was their unique morphological features such as fringe thread-, pebble-, curved quartz crystal-, crystal flower-; and canyon-like structures. The morphological data was well corroborated by the image processing data and physisorption curves corresponding to Type II isotherm with open hysteresis loops. Functionalization of mPEG had no evident influence on the macro-mechanical properties of the cryosponges but increased the matrix strength as determined by the rheomechanical analyses. The cryosponges were able to deliver bioactives (dexamethasone and curcumin) over 10 days, showed varied matrix degradation profiles, and supported neuronal cells on the matrix surface. In addition, in silico simulations confirmed the compatibility and molecular stability of the CHT/mPEG blend compositions. In conclusion, the study confirmed that significant morphological variations may be induced by minimal functionalization and crosslinking of biomaterials.


2020 ◽  
Vol 4 (11) ◽  
pp. 2070114
Author(s):  
Sara Nadine ◽  
Sónia G. Patrício ◽  
Cristina C. Barrias ◽  
Insung S. Choi ◽  
Michiya Matsusaki ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yuting Li ◽  
Hao Meng ◽  
Yuan Liu ◽  
Bruce P. Lee

Due to the increasing needs for organ transplantation and a universal shortage of donated tissues, tissue engineering emerges as a useful approach to engineer functional tissues. Although different synthetic materials have been used to fabricate tissue engineering scaffolds, they have many limitations such as the biocompatibility concerns, the inability to support cell attachment, and undesirable degradation rate. Fibrin gel, a biopolymeric material, provides numerous advantages over synthetic materials in functioning as a tissue engineering scaffold and a cell carrier. Fibrin gel exhibits excellent biocompatibility, promotes cell attachment, and can degrade in a controllable manner. Additionally, fibrin gel mimics the natural blood-clotting process and self-assembles into a polymer network. The ability for fibrin to curein situhas been exploited to develop injectable scaffolds for the repair of damaged cardiac and cartilage tissues. Additionally, fibrin gel has been utilized as a cell carrier to protect cells from the forces during the application and cell delivery processes while enhancing the cell viability and tissue regeneration. Here, we review the recent advancement in developing fibrin-based biomaterials for the development of injectable tissue engineering scaffold and cell carriers.


2020 ◽  
Vol 8 (24) ◽  
pp. 7106-7116
Author(s):  
Olfat Gsib ◽  
Loek J. Eggermont ◽  
Christophe Egles ◽  
Sidi A. Bencherif

Macroporous and mechanically reinforced sequential IPN hydrogels combine the biological activity of fibrin with the robust mechanical properties of PEG to generate advanced scaffolds for dermal tissue engineering.


2020 ◽  
Vol 4 (11) ◽  
pp. 2000127
Author(s):  
Sara Nadine ◽  
Sónia G. Patrício ◽  
Cristina C. Barrias ◽  
Insung S. Choi ◽  
Michiya Matsusaki ◽  
...  

Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 484 ◽  
Author(s):  
Xiaowei Zhang ◽  
Gyeong Kim ◽  
Min Kang ◽  
Jung Lee ◽  
Jeong Seo ◽  
...  

Biologically active materials from marine sources have been receiving increasing attention as they are free from the transmissible diseases and religious restrictions associated with the use of mammalian resources. Among various other biomaterials from marine sources, alginate and fish gelatin (f-gelatin), with their inherent bioactivity and physicochemical tunability, have been studied extensively and applied in various biomedical fields such as regenerative medicine, tissue engineering, and pharmaceutical products. In this study, by using alginate and f-gelatin’s chemical derivatives, we developed a marine-based interpenetrating polymer network (IPN) hydrogel consisting of alginate and f-gelatin methacryloyl (f-GelMA) networks via physical and chemical crosslinking methods, respectively. We then evaluated their physical properties (mechanical strength, swelling degree, and degradation rate) and cell behavior in hydrogels. Our results showed that the alginate/f-GelMA hydrogel displayed unique physical properties compared to when alginate and f-GelMA were used separately. These properties included high mechanical strength, low swelling and degradation rate, and an increase in cell adhesive ability. Moreover, for the first time, we introduced and optimized the application of alginate/f-GelMA hydrogel in a three-dimensional (3D) bioprinting system with high cell viability, which breaks the restriction of their utilization in tissue engineering applications and suggests that alginate/f-GelMA can be utilized as a novel bioink to broaden the uses of marine products in biomedical fields.


2016 ◽  
Vol 3 (11) ◽  
pp. 2860-2868 ◽  
Author(s):  
Jianming Sang ◽  
Xiang Li ◽  
Yue Shao ◽  
Zida Li ◽  
Jianping Fu

Sign in / Sign up

Export Citation Format

Share Document