Machine Learning for Atomic Simulation and Activity Prediction in Heterogeneous Catalysis: Current Status and Future

ACS Catalysis ◽  
2020 ◽  
Vol 10 (22) ◽  
pp. 13213-13226
Author(s):  
Sicong Ma ◽  
Zhi-Pan Liu
2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 551
Author(s):  
Chris Boyd ◽  
Greg Brown ◽  
Timothy Kleinig ◽  
Joseph Dawson ◽  
Mark D. McDonnell ◽  
...  

Research into machine learning (ML) for clinical vascular analysis, such as those useful for stroke and coronary artery disease, varies greatly between imaging modalities and vascular regions. Limited accessibility to large diverse patient imaging datasets, as well as a lack of transparency in specific methods, are obstacles to further development. This paper reviews the current status of quantitative vascular ML, identifying advantages and disadvantages common to all imaging modalities. Literature from the past 8 years was systematically collected from MEDLINE® and Scopus database searches in January 2021. Papers satisfying all search criteria, including a minimum of 50 patients, were further analysed and extracted of relevant data, for a total of 47 publications. Current ML image segmentation, disease risk prediction, and pathology quantitation methods have shown sensitivities and specificities over 70%, compared to expert manual analysis or invasive quantitation. Despite this, inconsistencies in methodology and the reporting of results have prevented inter-model comparison, impeding the identification of approaches with the greatest potential. The clinical potential of this technology has been well demonstrated in Computed Tomography of coronary artery disease, but remains practically limited in other modalities and body regions, particularly due to a lack of routine invasive reference measurements and patient datasets.


2020 ◽  
Vol 107 (4) ◽  
pp. 726-729 ◽  
Author(s):  
Qi Liu ◽  
Hao Zhu ◽  
Chao Liu ◽  
Daphney Jean ◽  
Shiew‐Mei Huang ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 742
Author(s):  
Rima Hajjo ◽  
Dima A. Sabbah ◽  
Sanaa K. Bardaweel ◽  
Alexander Tropsha

The identification of reliable and non-invasive oncology biomarkers remains a main priority in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The most frequently used cancer biomarkers are derived from either biological materials or imaging data. Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing and machine learning methods, and ending with summarizing the types of existing biomarkers and their clinical applications in different cancer types.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 565
Author(s):  
Satoshi Takahashi ◽  
Masamichi Takahashi ◽  
Shota Tanaka ◽  
Shunsaku Takayanagi ◽  
Hirokazu Takami ◽  
...  

Although the incidence of central nervous system (CNS) cancers is not high, it significantly reduces a patient’s quality of life and results in high mortality rates. A low incidence also means a low number of cases, which in turn means a low amount of information. To compensate, researchers have tried to increase the amount of information available from a single test using high-throughput technologies. This approach, referred to as single-omics analysis, has only been partially successful as one type of data may not be able to appropriately describe all the characteristics of a tumor. It is presently unclear what type of data can describe a particular clinical situation. One way to solve this problem is to use multi-omics data. When using many types of data, a selected data type or a combination of them may effectively resolve a clinical question. Hence, we conducted a comprehensive survey of papers in the field of neuro-oncology that used multi-omics data for analysis and found that most of the papers utilized machine learning techniques. This fact shows that it is useful to utilize machine learning techniques in multi-omics analysis. In this review, we discuss the current status of multi-omics analysis in the field of neuro-oncology and the importance of using machine learning techniques.


2021 ◽  
Vol 336 ◽  
pp. 06024
Author(s):  
Nan Liang ◽  
Qing Liang ◽  
Fenglei Ji

Traditional Chinese Medicine (TCM) has attracted more and more attention due to its remarkable effects on treating diseases, and Chinese herbal medicine (CHM) is an important partition of TCM, rich in natural active ingredients. Researchers are trying multiple analytical methods to dig out more valuable information about CHM and reveal the principle of TCM. Machine learning is playing an important role in the studies. Knowledge discovery of CHM using machine learning mainly includes quality control of CHM, network pharmacology in CHM, and medical prescriptions composed by CHM, aiming to understand TCM better, provide more efficiency methods in the production of CHM and find novel treatment of disease not curable nowadays. In this paper, we summarized the basic idea of frequently used classification and clustering machine learning algorithms, introduced pre-processing algorithms commonly used to simplify and accelerate machine learning procedure, presented current status of machine learning algorithms’ applications in knowledge discovery of CHM, discussed challenges and future trends of machine learning’s application in CHM. It is believed that the paper provides a valuable insight for the starters trying to apply machine learning in the study of CHM and catch up the recent status of related researches.


2014 ◽  
Vol 721 ◽  
pp. 750-753
Author(s):  
Jian Sheng Pan ◽  
Shi Cheng

Statisticians agree that signed epistemologies are an interesting new topic in the field of machine learning, and cyberneticists concur. Given the current status of pseudorandom configurations, cryptographers famously desire the refinement of simulated annealing. Our focus in this position paper is not on whether superblocks and extreme programming can collaborate to answer this quagmire, but rather on introducing a methodology for modular information (Timer).


Author(s):  
Scott M. Woodley ◽  
Graeme M. Day ◽  
R. Catlow

We review the current techniques used in the prediction of crystal structures and their surfaces and of the structures of nanoparticles. The main classes of search algorithm and energy function are summarized, and we discuss the growing role of methods based on machine learning. We illustrate the current status of the field with examples taken from metallic, inorganic and organic systems. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function’.


2019 ◽  
Vol 20 (3) ◽  
pp. 185-193 ◽  
Author(s):  
Natalie Stephenson ◽  
Emily Shane ◽  
Jessica Chase ◽  
Jason Rowland ◽  
David Ries ◽  
...  

Background:Drug discovery, which is the process of discovering new candidate medications, is very important for pharmaceutical industries. At its current stage, discovering new drugs is still a very expensive and time-consuming process, requiring Phases I, II and III for clinical trials. Recently, machine learning techniques in Artificial Intelligence (AI), especially the deep learning techniques which allow a computational model to generate multiple layers, have been widely applied and achieved state-of-the-art performance in different fields, such as speech recognition, image classification, bioinformatics, etc. One very important application of these AI techniques is in the field of drug discovery.Methods:We did a large-scale literature search on existing scientific websites (e.g, ScienceDirect, Arxiv) and startup companies to understand current status of machine learning techniques in drug discovery.Results:Our experiments demonstrated that there are different patterns in machine learning fields and drug discovery fields. For example, keywords like prediction, brain, discovery, and treatment are usually in drug discovery fields. Also, the total number of papers published in drug discovery fields with machine learning techniques is increasing every year.Conclusion:The main focus of this survey is to understand the current status of machine learning techniques in the drug discovery field within both academic and industrial settings, and discuss its potential future applications. Several interesting patterns for machine learning techniques in drug discovery fields are discussed in this survey.


Sign in / Sign up

Export Citation Format

Share Document