scholarly journals Network Pharmacology-Based Dissection of the Active Ingredients and Protective Mechanism of the Salvia Miltiorrhiza and Panax Notoginseng Herb Pair against Insulin Resistance

ACS Omega ◽  
2021 ◽  
Author(s):  
Xin-Yu Yang ◽  
Wen-Xiao Wang ◽  
Yu-Xi Huang ◽  
Shi-Jun Yue ◽  
Bai-Yang Zhang ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yang Ma ◽  
Wenjun Wang ◽  
Jiani Yang ◽  
Sha Zhang ◽  
Zhe Li ◽  
...  

Objective. This study is aimed to analyze the active ingredients, drug targets, and related pathways in the combination of Salvia miltiorrhiza (SM) and Radix puerariae (RP) in the treatment of cardio-cerebral vascular diseases (CCVDs). Method. The ingredients and targets of SM and RP were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the disease targets were obtained from Therapeutic Target Database (TTD), National Center for Biotechnology Information (NCBI), and Online Mendelian Inheritance in Man (OMIM) Database. The synergistic mechanisms of the SM and RP were evaluated by gene ontology (GO) enrichment analyses and Kyoto encyclopedia of genes and genomes (KEGG) path enrichment analyses. Result. A total of 61 active ingredients and 58 common targets were identified in this study. KEGG pathway enrichment analysis results showed that SM- and RP-regulated pathways were mainly inflammatory processes, immunosuppression, and cardiovascular systems. The component-target-pathway network indicated that SM and RP exert a synergistic mechanism for CCVDs through PTGS2 target in PI3k-Akt, TNF, and Jak-STAT signaling pathways. Conclusion. In summary, this study clarified the synergistic mechanisms of SM and RP, which can provide a better understanding of effect in the treatment of CCVDs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yan Li ◽  
Lei Wang ◽  
Bojun Xu ◽  
Liangbin Zhao ◽  
Li Li ◽  
...  

Background. Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus and is a major cause of end-stage kidney disease. Cordyceps sinensis (Cordyceps, Dong Chong Xia Cao) is a widely applied ingredient for treating patients with DN in China, while the molecular mechanisms remain unclear. This study is aimed at revealing the therapeutic mechanisms of Cordyceps in DN by undertaking a network pharmacology analysis. Materials and Methods. In this study, active ingredients and associated target proteins of Cordyceps sinensis were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Swiss Target Prediction platform, then reconfirmed by using PubChem databases. The collection of DN-related target genes was based on DisGeNET and GeneCards databases. A DN-Cordyceps common target interaction network was carried out via the STRING database, and the results were integrated and visualized by utilizing Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to determine the molecular mechanisms and therapeutic effects of Cordyceps on the treatment of DN. Results. Seven active ingredients were screened from Cordyceps, 293 putative target genes were identified, and 85 overlapping targets matched with DN were considered potential therapeutic targets, such as TNF, MAPK1, EGFR, ACE, and CASP3. The results of GO and KEGG analyses revealed that hub targets mainly participated in the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, PI3K-Akt signaling pathway, and IL-17 signaling pathway. These targets were correlated with inflammatory response, apoptosis, oxidative stress, insulin resistance, and other biological processes. Conclusions. Our study showed that Cordyceps is characterized as multicomponent, multitarget, and multichannel. Cordyceps may play a crucial role in the treatment of DN by targeting TNF, MAPK1, EGFR, ACE, and CASP3 signaling and involved in the inflammatory response, apoptosis, oxidative stress, and insulin resistance.


2020 ◽  
Author(s):  
Li-Li Zhang ◽  
Lin Han ◽  
Xin-Miao Wang ◽  
Yu Wei ◽  
Jing-Hui Zheng ◽  
...  

Abstract BackgroundThe mechanisms underlying the therapeutic effect of Salvia Miltiorrhiza (SM) against diabetic nephropathy (DN) using systematic network pharmacology and molecular docking methods were examined.MethodsTCMSP database was used to screen the active ingredients of SM. Gene targets were obtained using Swiss Target Prediction and TCMSP databases. Related targets of DN were retrieved from the Genecards and DisGeNET databases. Next, a PPI network was constructed using the common targets of SM-DN in the STRING database. The Metascape platform was used for GO function analysis and Cytoscape plug-in ClueGO was used for KEGG pathway enrichment analysis. Molecular docking was performed using iGEMDOCK and AutoDock Vina software. Pymol and LigPlos were used for mapping the network. ResultsSixty-six active ingredients and 189 targets were screened from SM. Among them, 64 targets overlapped with DN targets. The PPI network diagram revealed that AKT1, VEGFA, IL6, TNF, MAPK1, TP53, EGFR, STAT3, MAPK14, and JUN were the top 10 relevant targets. GO and KEGG analyses mainly focused on advanced glycation end products, oxidative stress, inflammatory response, and immune regulation. Molecular docking revealed that the potential target genes closely related to DN, including TNF, NOS2, and AKT1, were more stable in combination with salvianolic acid B, and their stability was better than that of tanshinone IIA.ConclusionThis study reveals the active components and potential molecular mechanisms involved in the therapeutic effect of SM against DN and provides a reference for the wide application of SM in clinically managing DN.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lin Wang ◽  
Zheyi Wang ◽  
Zhihua Yang ◽  
Kang Yang ◽  
Hongtao Yang

We aimed to explore the active ingredients and molecular mechanism of Tripterygium wilfordii (TW) in the treatment of diabetic nephropathy (DN) through network pharmacology and molecular biology. First, the active ingredients and potential targets of TW were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and related literature materials, and Cytoscape 3.7.2 software was used to construct the active ingredient-target network diagram of TW. Second, the target set of DN was obtained through the disease database, and the potential targets of TW in the treatment of DN were screened through a Venn diagram. A protein interaction network diagram (PPI) was constructed with the help of the String platform and Cytoscape 3.7.2. Third, the ClueGO plug-in tool was used to enrich the GO biological process and the KEGG metabolic pathway. Finally, molecular docking experiments and cell pathway analyses were performed. As a result, a total of 52 active ingredients of TW were screened, and 141 predicted targets and 49 target genes related to DN were identified. The biological process of GO is mediated mainly through the regulation of oxygen metabolism, endothelial cell proliferation, acute inflammation, apoptotic signal transduction pathway, fibroblast proliferation, positive regulation of cyclase activity, adipocyte differentiation and other biological processes. KEGG enrichment analysis showed that the main pathways involved were AGE-RAGE, vascular endothelial growth factor, HIF-1, IL-17, relaxin signalling pathway, TNF, Fc epsilon RI, insulin resistance and other signaling pathways. It can be concluded that TW may treat DN by reducing inflammation, reducing antioxidative stress, regulating immunity, improving vascular disease, reducing insulin resistance, delaying renal fibrosis, repairing podocytes, and reducing cell apoptosis, among others, with multicomponent, multitarget and multisystem characteristics.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yixuan Jiang ◽  
Shanliang Li ◽  
Xiaoqin Xie ◽  
Hemei Li ◽  
Panling Huang ◽  
...  

Background. Panax notoginseng saponins (PNS) have been used for neurodegenerative disorders such as cerebral ischemia and Alzheimer’s disease (AD). Although increasing evidences show the neuron protective effects of PNS, the vital compounds and their functional targets remain elusive. To explore the potential functional ingredients of PNS for the AD treatment and their molecular mechanisms, an in vitro neuron injured model induced by Aβ was investigated, and the potential mechanism was predicted by network pharmacology approach and validated by molecular biology methods. Methods. Network pharmacology approach was used to reveal the relationship between ingredient-target disease and function-pathway of PNS on the treatment of AD. The active ingredients of PNS were collected from TCMSP, PubChem database, and literature mining in PubMed database. DrugBank and GeneCards database were used to predict potential targets for AD. The STRING database was performed to reveal enrichment of these target proteins, protein-protein interactions, and related pathways. Networks were visualized by utilizing Cytoscape software. The enrichment analysis was performed by the DAVID database. Finally, neuroprotective effect and predictive mechanism of PNS were investigated in an in vitro AD model established by Aβ25–35-treated PC12 cells. Results. An ingredient-target disease and function-pathway network demonstrated that 38 active ingredients were derived from PNS modulated 364 common targets shared by PNS and AD. GO and KEGG analysis, further clustering analysis, showed that mTOR signaling targets were associated with the neuroprotective effects of PNS. In Aβ-treated PC12 cells, PNS treatment improved neuroprotective effect, including mTOR inhibition and autophagy activation. Conclusions. Collectively, the protective effects of PNS on AD-neuron injury are related to the inhibition of mTOR and autophagy activation.


2021 ◽  
Author(s):  
Lili Zhang ◽  
Lin Han ◽  
Xinmiao Wang ◽  
Yu Wei ◽  
Jinghui Zheng ◽  
...  

The mechanisms underlying the therapeutic effect of Salvia miltiorrhiza (SM) on diabetic nephropathy (DN) were examined using a systematic network pharmacology approach and molecular docking. The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredients of SM. Targets were obtained using the SwissTargetPrediction and TCMSP databases. Proteins related to DN were retrieved from the GeneCards and DisGeNET databases. A protein–protein interaction (PPI) network was constructed using common SM/DN targets in the STRING database. The Metascape platform was used for GO function analysis, and the Cytoscape plug-in ClueGO was used for KEGG pathway enrichment analysis. Molecular docking was performed using iGEMDOCK and AutoDock Vina software. Pymol and LigPlos were used for network mapping. Sixty-six active ingredients and 189 targets of SM were found. Sixty-four targets overlapped with DN-related proteins. The PPI network revealed that AKT1, VEGFA, IL6, TNF, MAPK1, TP53, EGFR, STAT3, MAPK14, and JUN were the 10 most relevant targets. Go and KEGG analyses revealed that the common targets of DN and SM were mainly involved in advanced glycation end products, oxidative stress, inflammatory response, and immune regulation. Molecular docking revealed that potential DN-related targets, includingTNF, NOS2, and AKT1, more stably bound with salvianolic acid B than with tanshinone IIA. In conclusion, this study revealed the active components and potential molecular therapeutic mechanisms of SM in DN and provides a reference for the wide application of SM in clinically managing DN.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huahe Zhu ◽  
Shun Wang ◽  
Cong Shan ◽  
Xiaoqian Li ◽  
Bo Tan ◽  
...  

AbstractXuan-bai-cheng-qi decoction (XCD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat a variety of respiratory diseases in China, especially to seriously infectious diseases such as acute lung injury (ALI). Due to the complexity of the chemical constituent, however, the underlying pharmacological mechanism of action of XCD is still unclear. To explore its protective mechanism on ALI, firstly, a network pharmacology experiment was conducted to construct a component-target network of XCD, which identified 46 active components and 280 predicted target genes. Then, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between ALI model rats treated with and without XCD and 753 DEGs were found. By overlapping the target genes identified using network pharmacology and DEGs using RNA-seq, and subsequent protein–protein interaction (PPI) network analysis, 6 kernel targets such as vascular epidermal growth factor (VEGF), mammalian target of rapamycin (mTOR), AKT1, hypoxia-inducible factor-1α (HIF-1α), and phosphoinositide 3-kinase (PI3K) and gene of phosphate and tension homology deleted on chromsome ten (PTEN) were screened out to be closely relevant to ALI treatment. Verification experiments in the LPS-induced ALI model rats showed that XCD could alleviate lung tissue pathological injury through attenuating proinflammatory cytokines release such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Meanwhile, both the mRNA and protein expression levels of PI3K, mTOR, HIF-1α, and VEGF in the lung tissues were down-regulated with XCD treatment. Therefore, the regulations of XCD on PI3K/mTOR/HIF-1α/VEGF signaling pathway was probably a crucial mechanism involved in the protective mechanism of XCD on ALI treatment.


Sign in / Sign up

Export Citation Format

Share Document